\qquad

End Term Examination

FOURTH SEmester [BCA] MAY-2014
Paper Code: BCA-202
Subject: Mathematics- 1 V
(2011 Onwards)
Time: 3 Hours
Maximum Marks: 75
Note: Attempt any five question, including Q.no. 1 which is compulsory. Select one question from each Unit. Scientific Calculator is allowed.
Q1 (a) A fair die is tossed twice. Find the probability of getting a 4,5, or 6 on the first toss and a $1,2,3$ or 4 on the second toss.
(b) Prove that:- $r\left({ }^{n} C_{r}\right)=n\left[{ }^{(n-1)} C_{r-1}\right]$.
(c) Evaluate $\Delta\left(\left(e^{x} \log 2 x\right)\right.$, where Δ is forward difference operator.
(d) A random variable x has the density function:-

$$
f(x)=\frac{c}{x^{2}+1}, \text { where, }-\alpha<x<\infty \text {. }
$$

Find the value of constant C?
(e) Find the probability of getting a total of 7 at least once in three tosses of a pair of fair dice.
(f) Find the moment generating function of a random variable x that is binomially distributed.
(g) Express $y=2 x^{3}-3 x^{2}+3 x-10$ in factorial notation and hence show that $\nabla^{3} y=12$
(h) Prove with the usual notations, that
$\Delta^{3} y_{2}=\nabla^{3} y_{5}$ where Δ is forward difference operator $\& \nabla$ is backward difference operator.
(i) In how many ways can a committee of 5 people be chosen out of 9 people?
(j) Evaluate:- $\left(\frac{\Delta^{2}}{E}\right) x^{3}$, where Δ is forward difference operator. ($10 \times 2.5=\mathbf{2 5}$)

Unit-I

Q2 (a) Urn I has 2 white and 3 black balls; Urn II has 4 white and 1 black balls; and Urn III has 3 white and 4 black balls. An Urn is selected at redom and a ball drawn at random is found to be white. Find the probability that Urn I was selected.
(b) Find the binomial expansion of $\left(x+\frac{2}{x}\right)^{9}$.

Q3 (a) The probability that a man will hit a target is $\frac{2}{3}$. If he shoots at the target until he hits it for the first time, find the probability that it will take him 5 shots to hit the target.
(b) In how many ways can 7 people be seated at a round table if (i) they can sit anywhere,
(ii) 2 particular people must not sit next to each other?

Unit-II

(a) A random variable x has density function given by:-

$$
f(x)=\left\{\begin{array}{rl}
2 e^{-x} & x \geq 0 \tag{6}\\
0 & x<0
\end{array}\right.
$$

Find:- (i) the moment generating function,
(ii) the first four moments about the origin.
P.T.O.
(b) Find the expectation of the sum of points in tossing a pair of fair dice.(6.5)

Q5 (a) Out of 2000 families with 4 children each, how many would you expect to have (i) at least 1 boy (ii) 1 or 2 girls?
(b) The mean weight of 500 male students at a certain college is 151 lb and the S.D. is 15 lb . Assuming that the weights are normally distributed, find how many students weigh (i) between 120 and 155 lb, (ii) more than 185 lb .

Unit-III

Q6 (a) Find the missing values in the following table:-

$\mathbf{x}:$	45	50	55	60	65
$\mathrm{y}:$	3.0	-	2.0	-	-2.4

(b) Using Newton's forward formula, find the value of $f(1.6)$, if

$\mathbf{x :}$	1	1.4	1.8	2.2
$\mathbf{y :}$	3.49	4.82	5.96	6.5

Q7 (a) Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct up to three decimal places.
(b) Find the root of the equation $x^{3}-2 x-5=0$ by Newton-Raphson method.

Unit-IV

Q8 (a) Apply Gauss-Elimination method to solve the equation:-

$$
\begin{align*}
& x+4 y-z=-5 \tag{6}\\
& x+y-6 z=-12 \\
& 3 x-y-z=4 \tag{6.5}
\end{align*}
$$

(b) Apply Gauss-Serdal iteration method to solve the equations. $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+20 z=25$.

Q9 (a) Evaluate:- $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Trapezoidal Rule by taking $\mathrm{h}=1 / 4$.
(b) Evaluate:- $\int_{0}^{1} \frac{d x}{1+x}$ taking 7 ordinates by applying Simpson $1 / 3$ Rule.(6.5)
\qquad

