END TERM EXAMINATION THIRD SEMESTER [BCA] DECEMBER-2014 | Paper Code: BCA203 Time: 3 Hours | | | Subject: Computer Architecture (2011 onwards) | | | | | | | | |----------------------------------|------------|---|---|--|---|------------------------------------|--|---------------------|----------|---| | | | | Maximum Marks :75 | | | | | | | | | Not | te: A | ttempt any five q | | | iding Q.no
from each | | h is com | pulsor | y. Sel | ect | | Q1 | (b)
(c) | What is a three-sta
What is insert open
A digital computer
bus is constructed
(i) How many sele
(ii) What size of modiii) How many mul
Explain direct and
Which addressing | tation? (has a c with mu ction inputiplexes tiplexers indirect | Give one common ultiplexes puts are ers are ne are the address | example. bus systems. there in eaceded? re in the buing modes u | for 16 resh multiples? | exer? | f 32 bits | s each. | (2)
(2)
The
(3)
(2)
(2) | | | (g)
(h) | What are 3 types of Design 2-bit by 2-bit what is the need of Write a short note. An instruction is address field has the state of | it array
finput-on
on mem
tored at
the value | multiplication in the control of | er.
aterface?
archy.
n 300 with
processor r | its addre
register R | ss field at | s the nu | ımber : | (3)
(2)
(2)
(3)
The
200. | | | | Evaluate the effect
(ii) immediate (iii) | elative | ress if th
and (iv) i | e addressin
ndirect. | g mode o | of the inst | ruction | is (i) d | irect
(4) | | | | | | | NIT-I | | * | | | | | Q2 | | What is a bus? D registers of 4 bits e | ach. | | | | ng multip | lexers r | | ng 4 | | | (p) | Draw and explain | he flowe | | or | cle. | | | | (5) | | Q3 | | Starting from an values of R after a logical shift-right a What are input-out | logical
nd a circ | alue of
shift-left
cular shi | R=11110110
, followed b
ift-left. | y a circu | lar shift-r | ight, fol | lowed | nary
by a
(6) | | | | | Hard Tolland | UI | NIT-II | | | | | | | Q4 | (9) | X = (A - B + C * (I | | to
))/(G+H | evaluate [*K). | the | arithme | etic | statem | ent- | | | (b) | (i) Using a genera
(ii) Using a genera
(iii) Using an accur
(iv) Using a stack of
What is pipelining, | register
nulator
rganized | r comput
type com
d compu
e process | ter with 2-ac
nputer with
ter with zero | ddress in:
1-address
address | structions
instruction
operation | ons.
instruc | | le. (4. | | Q5 | | What are addressin Write a short note | | | | ssing mod | des. | | | (8.5)
(4) | | Q6 | (a) | Show the step-by following binary n | umbers | ultiplica
are mu | ltiplied. Ass | s using
ume 4-b | Booth al | gorithm
s that h | when | gned | | | (b) | numbers: (i) (+5
What is asynchron
(i) strobe control as |)x(+3)
ous data
nd (ii) ha | andshaki | r? Discuss | asynchroning and b | nous data
lock diagr | transferams. | | (5)
(7.5) | | Q7 | | Show the contents
(i) 10110011 by 10
Explain DMA. Disc | 01 (i | ters E, A
i) 11110 | , Q and SC 0000 by 0011 | l. (use a c | lividend of | f 8 bits). | | (5)
(7.5) | | | | | | | | | | | | | | Q8 | | Explain associative
Giving suitable blo | | y with stams diffe | erentiate be | | | | mple. | (6.5)
(6) | | Q9 | Wl | nat is memory map
block diagrams. | ping? E | | or
arious type | s of mem | ory mapp | ing usi | -11.0 | table | | | | | | | dish di di di di d | | | | | 100 |