END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY-JUNE 2015

Paper Code: BCA-102

Subject: Mathematics (2011 onwards)


Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q.no.1 which is compulsory.

Select one question from each Unit,

- Q1 (a) Let R be the relation in the natural number N defined by the open sentence "(x-y) is divisible by 5", prove that R is an equivalence relation.
 - (b) Consider the bounded lattice L

Find the complements of a & c, if they exist.

(4)

(c) If $f(x) = x^3$, then find f^{-1} for all $x \in \mathbb{R}$.

(4)

(d) Show that $(A \cup B)^c = A^c \cap B^c$. (e) Define homomorphic and isomorphic graph.

(4)

(f) Define Tautology and Contradiction.

(5)

Unit-I

- Q2 (a) Let R and S be the following relations on: $B = \{a, b, c, d\}, R = \{(a, a), (a, c), (c, d), (d, b)\} \text{ and } S = \{(b, a), (c, c), (c, d), (d, a)\}. \text{ Find the following composition relations.}$ (i) ROS (ii) SOR (iii) ROR (iv) SOS.
 - (b) Let $U = \{a, b, c, d, e\}$, $A = \{a, b, d\}$ and $B = \{b, d, e\}$. Find (i) $A \cup B$ (ii) $B \cap A$ (iii) B - A (iv) $A^c \cap B$ (v) $B^c - A^c$ (6.5)
- Q3 (a) Let R be the relation in the natural numbers $N = \{1, 2, 3, \ldots\}$ defined by the open sentence "2x+y=10", that is, let $R = \{(x,y) \mid x \in N, y \in N, 2x+y=10\}$.
 - Find: (i) the domain of R (ii) the range of R (iii) R-1. (6)
 (b) Among 50 students in a class, 26 got an A in the first examination and 21 got an A in the second examination. If 17 students did not get an A in the either examination, how many students got A in both the examination? (6.5)

Unit-II

- Q4 (a) Let B = {2,3,4,5,6,8,9,10} be ordered by "x is a multiple of y".

 (i) Find all maximal elements of B.

 (ii) Find all minimal elements of B.
 - (iii)Does B have a first or a last element?
 - (b) State whether or not each of the following subsets of N is totally ordered: (6.5)
 - (i) {24, 2, 6} (ii) {3, 15, 5} (iii) {15, 5, 30} (iv) {1, 2, 3,.....}.

P.T.O.

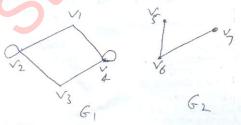
BCA-102

Q5 (a) Let R be the relation on A.

 $A = \{2, 3, 4, 6, 8, 12, 36, 48\}.$

 $R = \{(a, b) \mid a \text{ is divisor of b}\}$. Draw Hasse diagram.

(b) Consider the lattice M is given below figure: (6.5)


- (i) Find complements of a and b, if exist.
- (ii) Is M distributive? Complemented?

Unit-III

a) Give an example of Isomorphic graphs. Show that the graph G1 and G2 are not isomorphic.

(b) Define Adjacent matrix. Find the adjacency matrix of the graph G.(6.5)

- Q7 (a) Define (i) bipartite graph (ii) Hamilton Graph (iii) Cut-Vertical. (6) (6.5)
 - (b) Draw the directed graph of following incidence matrix:

	e_1	e ₂	e_3	e4	e ₅	e6	
V_1	1	0	0	0	1	0	
V2	1	1	0	0	0	1	
V_3	-1	0	0	0	0	1	
V_4	0	e ₂ 0 1 0 0	1	1	0	e ₆ 0 1 1	

Also find the degree of all vertex.

(6)

Q8

(a) Construct the truth table of the following:

(6)

- (i) (~p v q) V~p
- (ii) $(\sim q \rightarrow \sim p) \rightarrow (p \rightarrow q)$
- (b) Verify whether following are tautologies or not:

(6.5)

- (i) $(q \rightarrow p) \leftrightarrow (\sim q \lor p)$
- (ii) $(p \land (q-p)) \rightarrow p$

(6)

- Q9 (a) Consider the following:
 - p: Today is Monday.
 - q: It is hot.
 - r: It is not raining.

Write in simple sentence the meaning of the following:

- (i) $\sim p \Rightarrow (r \land q)$ (ii) $(p \lor r) \Leftrightarrow q$
- (b) What is the truth value of the quantification $(\exists x)Q(x)$, if the statement Q(x) and inverse of discourse is given as follows: (6.5)
 - (i) Q(x): x > 32
- U = {all real numbers}
- (ii) Q(x): x = x + 2
- U = {all real numbers}
- $(iii)Q(x): x^2 < 12$
- U = {positive integer not exceeding 3}.

16 10

BCA-102