(Please write your Exam Roll No.)

Exam Roll No. 01414202012

(3)

(2)

(6.5)

P.T.0

# END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY-JUNE-2013

| Paper Code: BCA102                                            | Subject: Mathematics-II |
|---------------------------------------------------------------|-------------------------|
| Time : 3 Hours                                                | Maximum Marks :75       |
| Note: Attempt any five questions inclu<br>Select one question |                         |

- Q1 (a) Find the domain and range of the function  $f(x) = 1/\sqrt{x-2}$ .
  - (b) Let  $A = \{2,3,7,8\}, B = \{1,3,5\}, C = \{3,5,9,11\}$ . Find  $A \Delta B$  and  $B \Delta C$ . (3)
  - (c) Show that the relation '≤' is partial order relation on the set of natural numbers. (Where '≤' means less than or equal to).
     (3)
  - (d) Show that the relation  $R = \{(1,1), (1,2), (2,2), (3,3)\}$  is reflexive relation but not identity on the set  $A = \{1,2,3\}$ . (2)
  - (e) Consider the graph G(V,E) where V consists of four vertices A,B,C,D and E consists of five edges  $e_1$ ,  $e_2$ ,  $e_3$ ,  $e_4$ ,  $e_5$  where  $e_1 = \{A, B\}$ ,  $e_2 = \{B, C\}$ ,  $e_3 = \{C, D\}$ ,  $e_4 = \{A, C\}$  and  $e_5 = \{B, D\}$  represent this undirected graph diagrammatically determine the degree of each vertex. (3)
  - (f) By means of truth table, prove that  $\sim (P \Leftrightarrow q) \equiv \sim P \Leftrightarrow q \equiv P \Leftrightarrow \sim q$ . (3)
  - (g) Verify that  $PV \sim (P^{q})$  is a tautology.
  - (h) Find the Adjacency matrix of graph a shown in fig.1 below. (3)

AV2

(i) Let the universal set is  $U = \{1,2,3,4,5,6,7\}$ ,  $A = \{1,3,4,5\}$  and  $B = \{1,2,4,6\}$ verify De-morgan's Laws. (3)

#### UNIT-I

- Q2 (a) Let R denotes the set of all real numbers and F: R→R be a function defined as F(x) = 4x+5∀x∈R. Show that F is both one-one and onto and also find f<sup>-1</sup>(y).
  (6.5)
  - (b) If R is an equivalence relation in a set A then prove that R<sup>-1</sup> is also an equivalence relation. (6)

(a) Prove that (i) 
$$A - (B \cap C) = (A - B) \cup (A - C)$$

Fig. 1

(ii) 
$$Ax(B \cup C) = (AxB) \cup (AxC)$$
, If A, B, C are sets.

(b) Let  $N = \{1,2,3...\}$  denote the set of all positive integers  $A = \{x : x \in N \text{ and } 3 < x < 12\}$  and  $B = \{x : x \in N, x \text{ even, } x < 15\}$ . Find  $A \cap B$ ,  $A \cup B$ ,  $A^{C}$  and  $B^{C}$  where  $A^{C}$  and  $B^{C}$  are denoted the complements of A and B in N. (6)

## UNIT-II

- (a) Let  $S = \{1,2,3\}$ , then for  $(P(S),\subseteq)$ . Find maximal, minimal, greatest and least elements and also prove that  $(P(s),\subseteq)$  is a Poset. (6.5)
  - (b) Let  $D_{100} = \{1,2,4,5,10,20,25,50,100\}$  and let the relation be  $\leq$  the relation/(divides) be a partial ordering on  $D_{100}$ .

## Download Study Material from StudentSuvidha.com

(i) Determine the glb of B, where  $B = \{10, 20\}$ .

(ii) Determine the lub of B, where  $B = \{10, 20\}$ .

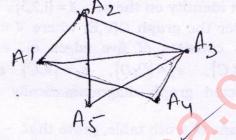
(iii)Determine the glb of B, where  $B = \{5,10,20,25\}$ .

(iv) Determine the lub of B, where  $B = \{5,10,20,25\}$ .

- Q5 (a) Define a Lattice L = {L,^,∨} where ^ and are binary operations called meet and joint respectively. Prove that for all a∈L, b∈L, a∧b=a, if and only if a∨b=b.
  (6.5)
  - (b) Let  $D_n$  denote the set of all positive divisors of the positive integers n. Determine  $D_{16}$  and represent it by means of the Hasse diagram. (6)



Consider the undirected graph G shown in the following diagram- (12.5)



(a) The set V(G) of all vertices of G.

- (b) The set E(G) of all edges of G.
- (c) deg(Ai) = i = 1,2,3,4,5 Where deg(A) denotes the degree of the vertex A.

(d) 
$$\sum_{i=1}^{n} \deg(Ai)$$
.

(e) Number of edges.

(f) Verify that  $\sum_{i=1}^{3} \deg(A_i) = 2(Number of edges)$ .

Consider the following adjacent matrix

Q7

|   | [O] | 1 | 0 | 1 | 0 | ]      |      |     |
|---|-----|---|---|---|---|--------|------|-----|
| = | 1   | 0 | 0 | 1 | 1 | . Draw | Taw  | the |
|   | 0   | 0 | 0 | 1 | 1 |        | Diaw |     |
|   | 1   | 1 | 1 | 0 | 1 |        |      |     |
|   | 0   | 1 | 1 | 1 | 0 |        |      |     |
|   |     |   |   |   |   | 1      | C. J | +1  |

undirected graph G corresponding to the matrix A and also find the degree of all vertex. (12.5)

### UNIT-IV

- Q8 (a) Draw the truth table for the following statement "If P implies q, q implies r, then P implies r". (6)
  - (b) By means of truth tables, justify that the conditional, statement, "If P then Q" is logically equivalent to the statement "Not P or q". (6.5)
- Q9
- (a) Define (i) Tautology (ii) Contradiction (iii) Contingency with example using truth table. (6)
- (b) Verify De-Morgan's law in proposition and also prove that  $P^{\wedge}(q \lor r) \equiv (P \land q) \lor (P \land r)$ . (6.5)

Download Study Material from StudentSuvidha.com