END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY-JUNE 2009

	SECOND SEMESTER [BCA] MAY-JUNE 2009
Paper Co Paper Id:	de: BCA-106 Subject: Digital Electronics (Batch: 2005-2008)
Time: 3	Hours Maximum Marks :75
	Note: Q1. is compulsory. Attempt one question from each part.
*	State and prove De-Morgan's theorem. Describe and compare Register, Main Memory and Secondary Memory. What are the drawbacks of S-R Flip-flop? How are they removed in J-K flip-flop? Perform the following conversions: (i) (AB.08) ₁₆ = () ₁₀ (ii) (670.04) ₈ = () ₁₆ Design full-subtractor using NAND Gate only.
sili	PART-A
(a)	Realize $Y = A+BC\overline{D}$ using NOR Gates only. $Y = (A+C)(A+\overline{D})(A+B+\overline{C})$ using NAND Gates only.
	Express the function Y = A+BC+BD in (i) Canonical SOP form (ii) Canonical POS form
De A	Using the K-Map method, simplify the following Boolean function $F = \sum_{m} (0,2,3,6,7) + \sum_{d} (8, 10, 11, 15)$ And obtain (i) minimal SOP and (ii) minimal POS expressions
(b)	If $\overrightarrow{A}B + \overrightarrow{CD} = 0$, then by using Boolean algebra's laws and properties prove that: $(\overrightarrow{A}B + \overrightarrow{C}(\overrightarrow{A} + \overrightarrow{D}) = \overrightarrow{A}B + \overrightarrow{B}D + \overrightarrow{A}\overrightarrow{C}D$
	PART-B
A4.	Explain Binary Multiplier. Show how a full-adder can be converted to a full-subtractor with the addition of an inverter circuit. (6.1)
X. A	What are MUX & DEMUX? Implement the following function using Multiplexer: $F = \sum_{m} (0,1,3,4,8,9,13,15)$ Design a code converter to convert Grey code into Binary code.
	PART-C
N. A.	Define flip flop. Realize JK flip-flop using D-flip-flop. Differentiate between combinational and sequential circuits. Explain the Race- Around condition and how can it be eliminated in Master-Slave JK Flip Flop? (6.1)
St. Ja	What are shift Registers? How are they different from Data Registers? The content of a 4-bit shift register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What will be the final content of the register after all the 6 shifts are over? Explain in detail the construction and working of Universal/Bidirectional shift register.
	PART-D
	Design a mod-10 counter to count in Grey code using D-flip flop. What is a Ripple Counter? Draw the wave forms to explain how this circuit can be used as a "Frequency Divider". (6.8)
do. 1/10)	What is a RAM? State the differences between Static RAM and Dynamic RAM. What is a ROM? State the differences among ROM, PROM, EPROM and EEPROM. (6.8)