(Please write your Exam Roll No.)

Exam Roll No.

END TERM EXAMINATION

SECOND SEMESTER [BBA] MAY-JUNE-2013

Paper Code: BBA106 BBA(B&I)106 BBA(TTM)106

Time : 3 Hours

BBA(MOM)106

Subject: Quantitative Techniques & Operations Research

Maximum Marks :75

Note: Attempt five questions including Q.no.1 which is compulsory. Select one question from each unit. All questions carry 15 marks each.

- Q1 Write short notes on **any five** of the following:-
 - (a) Measures of Central tendency (b) Measures of Variation (c) Lorenz Curve

(d) Correlation (f) Linear Programming Problem (e) Regression

(g) Transportation Problem

UNIT-I

Q2 (Calcul	late A.M.	, Mediar	and Mo	de for th	e frequer	ncy distri	bution.			
Varia	ble	10-13	13-16	16-19	19-22	22-25	25-28	28-31	31-34	34-37	37-40
Freque	ency	8	15	27	51	75	54	36	18	9	7
Q3 ,	The so	ores of t	wo batsi	men A ar	$\frac{1}{71} \frac{1}{39}$	en inning	s are as	follows:-	Q		

B 19 31 48 53 67 90 10 62 40 80

Which batsman is more consistent in scoring?

UNIT-II

Two judges in a beauty competition rank the 12 entries as follows:-Q4 3 5 . 8 9 X 2 4 6 7 10 11 12 9 6 10 3 5 4 7 8 Y 12 2 11 1

What degree of agreement in there between the judgement of the two judges?

Q5 Given $\sigma_x^2 = 9$ and Regression equation: 4x - 5y + 33 = 0, 20x - 9y - 107 = 0. Find (a) \overline{X} and \overline{Y} (b) σ_y (c) γ (coefficient of correlation)

UNIT-III

Q6 Solve by simplex method: max. $Z = 10x_1 + 6x_2 + 4x_3$, S.t. $x_1 + x_2 + x_3 \le 100$, $10x_1 + 4x_2 + 5x_3 \le 600$, $2x_1 + 2x_2 + 6x_3 \le 300$, $x_1, x_2, x_3 \ge 0$.

- $\Lambda_1, \Lambda_2, \Lambda_3 \geq 0$.
- Solve the L.P.P. by the principle of duality: Minimize $Z = 7y_1 + 3y_2 + 2y_3$, S.t. $y_1 + 2y_2 + y_3 \ge 5$, $2y_1 - y_2 + y_3 \ge 12$, and $y_1, y_2, y_3 \ge 0$.

UNIT-IV

Sol	ve the trans	portation pr	oblem	and o	heck	for op	timality.
		-	A	B	C	D	Capacity
		1	6	8	8	5	30
	Factory	2	5	11	9	7	40
		3	8	9	7	13	50
-		Demand	35	28	32	25	

Q9

07

Q8

Suggest optimal assignment schedule and the total maximum sale:

Sales persons	Sales territories						
	W	X	Y	Z			
А	50	40	60	45			
В	35	45	50	40			
С	40	50	60	35			
D	45	45	50	60			
		*	******	****			

Download Study Material from StudentSuvidha.com