[Maximum marks: 100

B. Tech 4th Semester (Civil) Examination, May-2016

DESIGN OF CONCRETE STRUCTURES-I

Paper-CE-206 F

Note: •		Question No. 1 is compulsory.		
		Students have to attempt five questions in to at least one question from each section. Assume any data if missing.	ta	
1.	(a)	What are the factors affecting the durability concrete?	o:	
	(b)	Write down the difference between limit stamethod and working stress method.	ate 4	
	(c)	Discuss in brief basic assumption of straight lin theory.		
	(d)	Explain the phenomena of load distribution in to	w/c	

Section-A

Write down IS 456: 2000 recommendations for the longitudinal reinforcement of the column. 4

way slab with diagram.

2.	Explain the following:			
	(a)	Grading of aggregate.	20	
	(b)	Shrinkage and creep.		
	(c)	Water cement ratio		

Time allowed: 3 hours]

24197

24197

3. Draw and explain the stress strain relationship of steel and concrete in detail.

Section-B

- 4. The floor of a hall measures 16 m × 6 m to the face of the supporting walls. The floor consists of three beams spaced at 4 m centre to centre, and the slab thickness is 120 mm. The floor carries a uniform distributed load of 5 kN/m², inclusive of the floor finish. Design the intermediate beam. Using M 20 concrete and Fe 415 steel. The support width may be assumed equal to 500 mm.
- 5. A simply supported beam 300 mm wide and 600 mm effective depth carries a uniform distributed load of 70 kN/m including its own weight, over an effective span of 6 m. The reinforcement consists of 5 bars of 25 mm diameter. Out of these, two bars can be safely bent at 1 m distance from the support. Design suitable shear reinforcement for the beam. Use m 20 concrete.

 F. = 250 N/mm².

Section-C

6. Draw and explain the beam, column junction detailing as per IS specifications in detail.

7. Design a R. C. slab for room measuring 4 m × 5 m from inside. The slab carries a live load of 2000 N/m² and finished with 20 mm thick granolithic topping. Use M 20 concrete and Fe 415 steel. The slab is simply supported at all the four edges, with corners free to lift.

(3)

Section-D

- 8. Design a rectangular isolated footing of uniform thickness for RC column bearing a vertical load of 600 kN, and having a base size of 400 × 600 mm. The safe bearing capacity of the soil may be taken as 110 kN/m². Use M 20 concrete and Fe 415 steel.
- 9. Determine the reinforcement for a short column for the following data: 20

Column size : 400 × 600 mm Pu : 25

Pu: 2500 kN

 M_{ii} : 160 kN

 M_{uy} : 120 kN

Use M 25 concrete mix and Fe 415 steel.