B. Tech. 4th Semester (ME) Examination, May-2016 KINEMATICS OF MACHINE

Paper-ME-204-F

Time allowed: 3 hours]

[Maximum marks: 100

Note: Question 1 is compulsory and attempt any one of the question from each section.

- 1. Explain the following:
 - (a) Definition of Resistant body.
 - (b) Difference between machine and structure.
 - (c) Degree of freedom.
 - (d) Define Kinematic pair and explain all its types with example.
- (e) Explain Laws of solid friction.
 - (f) Explain types of Pulleys.
 - (g) Define Module.
 - (h) Define cam and its type.

2.5×8=20

Section-A

- 2. In a quick return motion mechanism of crank and slotted lever type, the ratio of maximum velocities is 2. If the length of stroke is 25 cm, find
 - (i) The length of the slotted lever.

24170-P-3 Q-9 (16)

[P.T.O.

- The ratio of times of cutting and return strokes.
- The maximum cutting velocity per second if the crank rotates at 30 rpm.
- In a four bar chain ABCD, AD is fixed and is 120 mm long. The crank AB is 30 mm long and rotates at 100 rpm clockwise while the link CD = 60 mm oscillates about D. BC and AD are of equal length. Find the angular velocity of link CD when angle BAD = 60°.

Section-B

- Derive the equation for minimum force required to drag a body on rough horizontal surface. 20
- Derive the equation of ratio of Driving tensions in flat belt. Also find out the maximum power transmitted by a belt.

Section-C

The minimum radius, lift and nose radius of a tangent cam are 4.2 cm, 1.4 cm and 1.6 cm respectively. The roller follower axis passes through the cam axis and radius is 2 cm. Semi angle of cam action is 70°. Draw displacement velocity and acceleration diagrams for follower motion for one rotation of the cam.

Download Study Material from StudentSuvidha.com

A pair of spur wheels with 14 and 21 teeth are of involute profile and pressure angle 16°. Find maximum addenda on the pinion and gear wheel to avoid interference if module is 6 mm. Also find the maximum velocity of sliding on either side of the pitch point of pinion runs at 300 rpm. 20

(3)

Section-D

Derive the Freudenstein's equation.

20

Two bevel gears A and B having 40 and 30 teeth are rigidly mounted on two co-axial shafts X and Y. A bevel gear C having 50 teeth meshes with A and B and rotates freely on one end of an arm. At the other end of the arm is welded a sleeve and the sleeve is riding freely loose on the axes of the shafts. If the shaft X rotates at 100 rpm clockwise and arm rotates at 100 rpm anticlockwise, find speed of shaft Y. 20