Roll No.

24043

B. Tech. 3rd Semester (IT) Examination - December, 2015

DIGITAL ELECTRONICS

they hav	nswering the questions, candidates should ensure that be been supplied the correct and complete question paper. Dlaint in this regard, will be entertained after examination.
	The candidate will be required to attempt <i>five</i> questions in all, selecting at least <i>one</i> from each Unit. Question No. 1 is <i>compulsory</i> .
1. (a)	Design a single bit magnitude comparator to compare two alphabet A and B. 2
(b)	Write the logic expressions for the difference and borrow of a half subtractor. 2
(c)	Implement the XOR function using ROM. 3
(d)	What are the two types of asynchronous sequential circuits?
(e)	State the differences between Mealy and Moore state machines.

1	(f)	How a D flip-flop (FF) is converted into T FF?	2		UNIT – II
	(g)	Draw the logic diagram of static RAM cell as bipolar RAM cell.	nd 2	4. (a)	What is an adder ? Explain its logic diagram with
	(h)	How many flip flops are required to build binary counter that counts from 0 to 1023?	a 2	(b)	truth table. 4 Differentiate combinational and sequential logic
	(i)	What are don't care terms and hazards?	2		circuits. 4
	ς.	UNIT – I		(c)	Draw a logic circuit of a 4-bit parallel adder. 8
					Differentiate between decoder and demultiplexer
2.	(a)	Express the Boolean function $f = A + B'C$ in a su of minterms.	ım 6		with example. 4
	(b)	What is a BCD code and mention its applications	. 2	5. (a)	Draw the logic diagram of a 2-bit by 2-bit binary
		Simplify the given Boolean function by us			multiplier and explain its operation.
		tabulation method:	8	(b)	Design a BCD adder and explain its working with
		$F(A, B, C, D) = \sum m(1, 2, 3, 5, 7, 9, 10, 11, 13, 15)$		necessary circuit diagram.	
	(d)	What is prime implicants? and state distributi	ive	(c)	Implement following function using suitable
		law.	4 .		multiplexer: 5
3.	(a)	Explain about NAND and NOR implementation	. 8		$f(A, B, C, D) = \sum m(1, 3, 4, 11, 12, 13, 14, 15)$
	(b)	Multiply (1010.10) ₂ and (101) ₂ .	2		UNIT – III
	(c)	Define Radix of a number system.	2		그리고 2016년 1일 1일 - 그렇게 그렇다.
	(d)	Convert the binary number 110100 into gray co	ode	6. (a)	Explain the operation of a BCD ripple counter
		and write the necessary steps.	4		with a JK flip flops.
	(e)	Realise: OR gate and AND gate using NOR gat	es.	- (b)	Explain the operation of clocked RS flip flop using
			4		NAND gates. 5
404	3-96	50-(P-4)(Q-9)(15) (2)		24043-9	9650-(P-4)(Q-9)(15) (3) P. T. O.

		그 맛이 하는 그를 살아 있다는 그 그 그 그 가는 것이 없는 생생.
•	(c)	Explain the different type of triggering. 5
7.	(a)	Define modulus of a counter with examples. 2
	(b)	Explain the operation of a 4-bit Johnson counter
		with truth table and timing diagram. 10
	(c)	Explain the working of a 4-bit SISO shift register
		with logic diagram and truth table. 8
		UNIT – IV
8.	(a)	Write short note on memory decoding and
		memory expansion. 10
	(b)	Write short note on races and hazards that occur
		in asynchronous circuits. Discuss the method
		used for race free assignment with example. 10
9.	(a)	Implement a 3-bit up\down counter using PAL
		device. 8
	(b)	Design and explain 32*8 ROM. 12

24043-9650-(P-4)(Q-9)(15) (4)