[Total No. of Pages: 03

Paper ID [A0614]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - 5th)

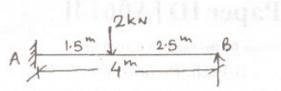
STRUCTURAL ANALYSIS - II (CE - 305)

Time: 03 Hours

Maximum Marks: 60

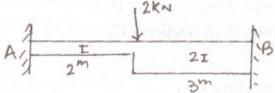
Instruction to Candidates:

- Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

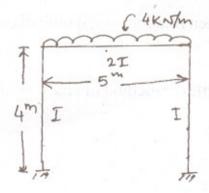

Section - A

Q1)

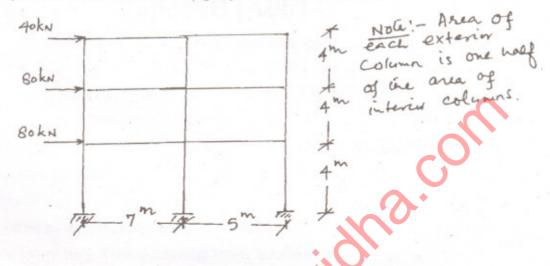
 $(10 \times 2 = 20)$


- a) State law of reciprocal deflections.
- b) What is necessity of providing fixed beams?
- c) State Castiglian theorems.
- d) Under what conditions there is Sway in rigid frames?
- e) Explain distribution factors in moment distribution method.
- f) What is the relationship between rotation contribution factor and moment distribution factor?
- g) What are assumptions in cantilever method of analysis of frames?
- h) What is a simple space truss?
- i) State Muller Breslau principle.
- j) What is the effect of sinking of support in fixed beams?

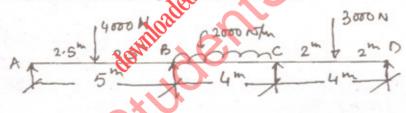
Q2) A propped cantilever AB of span 4m carries a point load of 2 kN as shown:

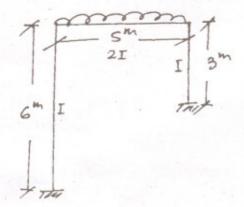

Calculate support reactions and moment at 'A' using Strain Energy method. $EI = 1 \times 10^6 \text{ N.m}^2$.

Q3) A fixed beam AB of span 5m carries a point load of 2 kN at 2m from left support as shown:



Calculate the fixed end moments by moment area method. $EI = 1 \times 10^6 \text{ N.m}^2$.


- Q4) Explain the procedure for the anxietis of space frames using Tension coefficient method.
- Q5) A continuous beam ARSD is fixed at A and simply support at D. Span AB=6m; BC=4m; CD=4m. Span AB carries a u.d.1 .of 3 kN/m. Span BC carries a point load of 2 kN at its centre and Span CD carries a point load of 1 kN at 1m from D. Analyse the beam by Kani's method.
- Q6) Analyze the frame shown by Moment Distribution method.


Q7) Analyse the frame shown in Fig. by cantilever method.

Q8) A continuous beam ABCD carries the loads as shown. During loading support C sinks by 1 cm. Calculate the apport moments and draw BMD using three moment's theorem (Clapeyron's theorem).

Q9) Analyse the portal frame shown by slope deflection method.

