Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CE) (Sem.-4) Fluid Mechanics-II Subject Code: CE-204 Paper ID: [A0607]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR prestions.

3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any 1000 questions.

SECTION-

I. Write briefly:

- a. Write the boundary conditions for Plane Poiseuille flow.
- b. Define nominal thickness of boundary layer.
- c. Calculate the nominal thickness of turbulent boundary layer over a flat plate at a distance 10 m from the leading edge, if the free steam velocity is 10 m/s and viscosity is 1×10-6m²/s.
- d. Find out the drag force on a sphere of diameter 1 cm falling with uniform velocity of 1 cm/s in a fluid with viscosity 0.1 N-s/m².
- e. What is the concept behind Karman similarity hypothesis in a turbulent flow?
- f. Why the laminar flow separates much early than the turbulent flow?
- g. Define critical, subcritical and supercritical flow.
- Write names of four methods to calculate the length of water surface profile in a gradually varied flow.
- i. On what condition the hydraulic jumps take place?
- j. What is normal depth?

SECTION-B

- 2. Derive the equation for generalized Couette flow from the Navier-Stokes equation.
- 3. A rough pipe of 50 cm diameter and 300 m in length is carrying water with a velocity of 4 m/s. The surface has an absolute roughness of 0.25 mm. Determine whether the flow is laminar or turbulent? Find out the head loss due to friction.
- 4. A trapezoidal channel with side slopes 1:1 has to be designed to convey a discharge of 30 cumec at an average velocity of 2 m/s. Find out the minimum area of the concrete lining per unit length for the sides and bed.
- A rectangular channel of 2 m width has a discharge of 0.4 m³/s. Find the height of the sudden rise of the channel spanning full width so that the upstream flow depth can be maintained at 0.85 m.
- Find out the energy loss expression for the hydraulic jump in an open channel flow.

SECTION-C

7. The velocity distribution in the boundary layer over the face of a high spillway is in the following form:

$$\frac{u}{U_{\infty}} = \left(\frac{y}{\delta}\right)^{0.22}$$

The free stream velocity (U_{∞}) at a certain section is 20 m/s and a boundary layer thickness of 5 cm is estimated from the velocity distribution measured at the section. The discharge passing over the spillway is 5 m³/s per meter length of the spillway. Calculate the displacement thickness, energy thickness, and the loss of energy upto the section under consideration.

- 8. A sfuice across a channel 6 m wide discharges 1 m deep stream. Calculate the flow rate when the upstream flow depth is 7 m. At downstream, floor has been raised locally to form the hydraulic jump. Find out the force on the concrete block if the depth of flow after jump is 3 m.
- Discuss the various flow profiles in a open channel for mild, steep and horizontal slopes.