TY 11	TA 1	E)													235					
Koll	N	0.						٠			٠	•	٠	٠	٠	٠	•	•	•	

24260

B. Tech. 5th Semester (ME)

Examination – December, 2014								
INTERNAL COMBUSTION ENGINES AND GAS TURBINES								
Paper: ME-307-F								
Time: Three Hours] [Maximum Marks: 100								
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.								
Note: Attempt any five questions in all. Question No. 1 is compulsory and select at least one question from each Section.								
 1. (a) What are the various assumptions made in various air standard cycle? 4 (b) Define the working of catalytic converter and show by way of figure where it is placed. 								
show by way of figure where it is placed. 4 (c) Write short note on stages of combustion in S. I. Engines. 4 24260-9150-(P-4)(Q-9)(14) P. T. O.								

	(d)	Explain the Euro norms for pollution.	2
	(e)	What is octane number of petrol?	2
- 1	(f)	Explain the various methods of scavenging.	2
	(g)	What is volumetric efficiency?	2
*		SECTION - A	
2.	(a)	State the essential requirement of a diese	el
	88	injection system.	0
	(b)	Derive an expression for the calculation of air fue	el
či,	Ŷå.	ratio for the carburetor.	0
i.	An	engine working on Dual cycle takes air at 1 ba	r
	and	20°C. The maximum pressure of the cycle i	s
	limi	ted to 70 bar. The compression ratio of the engin	e
	is 15	5. Find out air standard efficiency and MEP of the	e
	cycl	e. Assume heat added at constant volume is equa	1
16	to h	eat added at constant pressure.	0

SECTION - B

4. What is cooling system? Mention its types. What are disadvantages of overcooling?20

- 5. (a) Explain the phenomenon of knock in CI Engineand compare the same with SI engine knock.10
 - (b) Explain the octane rating of fuels.

10

SECTION - C

- 6. A two stroke diesel engine was motored when meter reading was 1.5 kW. Then the test on the engine was carried out for one hour and following observations were recorded:
 - 1. Brake torque = 120 Nm, 2. RPM = 600, 3. Fuel used = 2.5 kg, 4. C.V. of fuel = 40.3 MJ/kg, 5. Cooling water used =818 kg, 6. Rise in cooling water temperature = 10°C, 7. Exhaust gas temperature=345°C, 8. Room temperature = 25°C, 9. A : F used = 32 : 1

Take $C_{eg} = 1.05$ kJ/kg. K Determine (a) B.P., I.P. and mechanical η and indicated thermal η (b) Draw up heat balance on minute and percentage basis.

- 7. (a) Explain briefly various alternate fuels that can be used for I. C. Engines.
 - (b) Describe the method used to measure the B. P. of a small engine. Mention the assumptions made 10

24260-9150-(P-4)(Q-9)(14)

(3)

P. T. O.

SECTION - D

- 8. (a) With a neat diagram, explain the inlet and exit velocity triangles for various of blades.10
 - (b) Define slip factor and derive an expression for the same.
- 9. Explain the methods that can adopted for improvements of the basic gas turbine cycle.20