B.TECH 3 ${ }^{\text {RD }}$ SEM.

STRUCTURAL ANALYSIS -1

PAPER: CE -201-F
DEC - 2010

SECTION - A

Q.NO. 1 (a).

State "Hook's law and it's applications".
Q.NO. 1 (b). A load of 400 KN is applied on a short concrete column $250 \mathrm{~mm} \times 250 \mathrm{~mm}$ and the column is reinforced with steel bars of total area $2512 \mathrm{~mm}^{2}$. if the modulus of elasticity for steel is 18 time, that of concrete, . Find the stresses in concrete and steel.
Q.NO. 2(a)

Derive the expression for normal stress and tangential stress on a oblique section of a body subjected to direct stresses in two mutually perpendicular direction.
Q.NO. 2(b)

At a point in a strained material, is subjected to two mutually perpendicular tensile stresses of 20 $\mathrm{kN} / \mathrm{cm}^{2}$ and $10 \mathrm{kN} / \mathrm{cm}^{2}$. Determine the intensities of normal stress and resultant stress on a plane, inclined at 50° to horizontal axis i.e. axis of minor principal stress.

SECTION -B

Q.NO. 3

A I-section is as shown in fig. . It is subjected to a bending moment of $5000 \mathrm{~N}-\mathrm{m}$ at its neutral axis . Find the maximum stress induced in the beam.

Q.NO. 4(a)

Drive a torsion equation for a circular shaft.
Q.NO. 4(b)

A wooden beam 15 cm wide and 20 cm deep is reinforced at the bottom by a steel plate 15 cm wide and 1.2 cm thick. if the allowable stresses in wood and steel are $1 \mathrm{kN} / \mathrm{cm}^{2}$ and $13 \mathrm{kN} / \mathrm{cm}^{2}$ respectively. Find the safe Bending Moment that the section may carry. (Take $\mathrm{E}_{\mathrm{s}}=15 \mathrm{E}_{\mathrm{w}}$) 10

SECTION-C

Q.NO. 5(a)

What are the different end conditions for column? What will be the effective length according to these conditions?
$2.5+2.5=5$
Q.NO. 5(b)

A strut 3.0 m long is 60 mm in diameter. Find the safe compressive load for the member using Euler's formula if
(i) Both ends hinged or pinned.
(ii) Both ends fixed

Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and the factor of safety $=3.5$

Q NO. 6 (a)
State the assumptions of Euler's column theory.
Q NO. 6 (b) A column of circular section made of cast iron 200 mm external diameter and 20 mm thick is used as a column. The length of a column is 4 m . Both ends of the column are fixed. The column carries a load of 180 kN at an eccentricity of 250 mm from the axis of the column. Find the stresses developed in the extreme fibers. Take $\mathrm{E}=94000 \mathrm{~N} / \mathrm{mm}^{2}$.

SECTION -D

Q.NO. 7

A beam 6 m long simply supported at the ends and carries a uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ and three concentrated loads $10 \mathrm{kN}, 20 \mathrm{kN}$ and 30 kN acting at 1.5 m from left support , centre point and 1.5 m from right support respectively. Draw the SFD and BMD and determine the max. B.M. 20
Q.NO. 8

A simply supported beam $A B$, of span 10 m is subjected to a point load of magnitude 50 kN at its centre Find out the maximum slope and deflection by moment area method. Take $\mathrm{I}=160 \times 10^{3}$ cm^{4} and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

