GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEM-VII Examination-Nov/Dec.-2011

Subject code: 171907 Date: 29/11/2011

Subject Name: Energy conservation and Management

Time: 10.30 am-01.00 pm Total marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss in brief Energy conservation Act 2001 and its features. 07
 - (b) Define Energy management. State the basic principles and benefits of 07 energy management.
- Q.2 (a) What do you mean by 'Energy audit'? Discuss types of energy audit 07 briefly.
 - (b) Write note on 'Indian Energy scenario.'

OR

- (b) A domestic food refrigerator maintains a temperature of -10°C. The **07** ambient temperature is 40°C. If heat leaks into the freezer at a continuous rate of 2kJ/s, determine the least power necessary to pump this heat out continuously.
- Q.3 (a) State key elements of Energy monitoring and targeting system. Also 06 discuss its benefits.
 - **(b)** Explain in brief the following:

08

07

- (i) Renewable and nonrenewable energy.
- (ii) Commercial and Noncommercial energy
- (iii) Low grade and High grade energy
- (iv)Energy security

OR

Q.3 (a) What to you mean by Pay back period?

05

A co-generation plant installation is expected to reduce a company's annual energy bill by Rs.24 lakhs. If the capital cost of the new co-generation installation is Rs.90 lakhs and the annual maintenance and operating costs are Rs. 6 lakhs, What will be the expected pay back period for the project?

(b) The following sample data are produced during monitoring programme. 09
Establish Energy-Production relationship for the given foundry case.
Also Plot the Energy-production graph for nine months.

Month	Production	Energy
	Ton./month	Toe/month
1	320	300
2	520	400
3	240	280
4	620	424
5	600	420
6	380	340
7	440	340
8	460	380
9	520	380

Q.4 (a) Using the net present value method, evaluate the financial merits of two proposed projects shown in table. The annual rate is 8 % for each project.

	Project 1	Project 2
Capital cost	30000	30000
Year	Net annual	Net annual
	saving (Rs.)	saving (Rs.)
1	+6600	+6000
2	+6600	+6000
3	+6300	+6000
4	+6300	+6000
5	+6000	+6000
6	+6000	+6000
7	+5700	+6000
8	+5700	+6000
9	+5400	+6000
10	+5400	+6000
Total net saving at end of tenth year	+60000	+60000

(b) Discuss the role of Energy service companies (ESCOs).

Q.4 (a) Discuss the sources of waste heat and its potential applications.
(b) With a neat sketch explain Gas turbine co-generation plant
07
07
07

- Q.5 (a) What are co-generation plants? Explain the difference between 04 bottoming and topping cycle co-generation plants.
 - (b) A portable machine requires a force of 250 N to move it. How much work is done if the machine is moved 25 m and what average power is utilized if the movement takes 50s?
 - (c) Explain in brief Energy efficiency versus Energy conservation. Write 07 step wise procedure to calculate Boiler efficiency.

OR

- Q.5 (a) A three phase induction 75 kW motor operates at 55 kW. The measured voltage is 415 V. Current 80 A. Calculate the power factor of the motor.
 - (b) Explain the following:

 (i) Reactive power and Active power
 - (i) Explain the importance of TOD (time of the day) tariff
 - (c) Prepare a list of five measures for energy optimization in boilers and in 07 lighting systems.

07