Enrolment No._____ Seat No.: ___

GUJARAT TECHNOLOGICAL UNIVERSITY

Suhi	ect c	ode: 171905 Date: 29/05/2	012		
•		Name: Industrial Tribology	V12		
•		:30 pm – 05:00 pm Total Marks	: 70		
Instr		•			
		empt all questions.			
	 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
Q.1	(a)	State the different theories of friction. Explain any one of them which is most widely accepted with neat sketch.	07		
	(b)	Define absolute and kinematic viscosity. Also define viscosity index. Discuss the effect of temperature on absolute viscosity of the lubricating oil.	07		
Q.2	(a)	Explain the air/gas bearing in detail.	07		
	(b)	State the different functions of the lubricants. Explain grease as lubricant in detail. OR	07		
	(b)		07		
Q.3	(a)	Explain the EHD (elasto hydrodynamic) lubrication in detail. State the different examples of it.	07		
	(b)		07		
0.2	(a)	OR	07		
Q.3	(a)	Explain the diagnostic maintenance of tribological components and considerations in IC engines and automobile parts.	U/		
	(b)	A ONLY	07		
Q.4	(a)	· · · · · · · · · · · · · · · · · · ·	07		
	(b)	the assumptions made in this derivation. Explain oil whip and whirl.	07		
	(D)	OR	U/		
Q.4	(a)	Derive Petroff's equation for lightly loaded bearing.	07		
	(b)	The following data refers to a 360° hydrodynamic bearing:	07		
		Journal diameter = 40 mm Radial load = 6.5 kN Bearing length = 20 mm Journal speed = 1500 r.p.m.			
		Radial clearance = 0.007 mm Oil viscosity = 25 cP			
		·			
		Find the minimum oil film thickness, friction coefficient, oil flow and power lost in churning.			
		power rost in charming. l/d h_0/c S $CFV = f(r/c)$ $FV = Q/renl$			
		½ 0.4 0.319 8.10 4.85			
		0.6 0.779 17 4.29			
		0.8 2.03 40.9 3.72			

Q.5	` ′	State and explain general requirements of good bearing materials. The following data refers to a hydrostatic thrust bearing:	07 07

Thrust load = 500 kN	Shaft speed = 720 r.p.m.
Recess diameter = 300 mm	Shaft diameter = 500 mm
Film thickness = 0.15 mm	Viscosity of lubricant = 29.3 cP
Calculate the supply pressure, flow	requirement in lit/min and power loss
in pumping.	-

OR

Q.5 (a) Write short note on the following (any ONE):

Selection of bearing.
Lubrication systems.

(b) Explain the optimum design of hydrostatic step bearing.
