

Seat No.: Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER - VII • EXAMINATION - WINTER 2012

Subject code: 171903 Date: 01/01/20			13	
Subje	ect N	Name: Computer Integrated Manufacturing		
Time: 10.30 am - 01.00 pm Total Marks: 70				
Instructions:				
	1. 2.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	What are the basic components of numerical control system Draw and discuss function of each component.	04	
	(b)	•	03	
	(c)	ŭ •	03	
	(d)	Process rationalization and standardization is a benefit derived from CAPP. Explain.	04	
Q.2	(a)	Why is part classification and coding required in GT. Explain OPTIZ system of coding.	07	
	(b)	Explain with neat sketch AS/RS system used in FMS OR	07	
	(b)	Explain the types of flexibilities in FMS and discuss the factors on which these flexibilities depend.	07	
Q.3	(a)	List the various models of CIM. Explain anyone in detail.	07	
	(b)	OR	07	
Q.3	(a)		07	
	(b)		07	
Q.4	(a)		07	
	(b)	Discuss various applications of robots. OR	07	
Q.4 Q.4	(a) (b)		07 07	
Q.5	(a)	What are canned cycles? What is the difference between a	07	
		canned cycle and subroutine? Discuss how a canned cycle		
	(b)	can be useful in writing a part program. Write a part program for component shown in Figure.1.	07	
	(0)	write a part program for component shown in Figure.1.	07	
		OR		
Q.5	(a)	What are the different geometric statements used to write part program using APT? Discuss each statement with a suitable example	07	
	(b)	Explain with the help of part programming , the concept of subroutine and do loops for programming the component shown in Figure.2	07	

Annexture - (I)

MISCELLANEOUS (M) FUNCTIONS

Following is a tist of miscellaneous functions used in the milling and turning examples in this text. Other M functions common to General Numeric and FANUC controllers are also listed.

M00-Program stop.

M01-Optional stop.

M02-End of program (rowind tape).

M03-Spindle start clockwise.

M04-Spindle start counterclockwise.

M05-Spindle stop.

M06-Tool change.

M08-Coolant on.

M09-Coolant off.

M13-Spindle on clockwise, coolant on (on some systems)

M14-Spindle on counterclockwise, coolant on.

M17-Spindle and coolant off (on some systems).

M19-Spindle crient and stop.

M21-Mirror image X axis.

M22-Mirror image Y axis.

M23-Mirror image oll.

M30-End of program Memory reset

M41-Low range

M42—High range.

M48-Overage cancel off.

M49-Ownide cancel un.

M98-Jump to subroutine.

M99-Return from subroutine.

Annexture - (II)

PREPARATORY FUNCTIONS (G CODES)

Following is a list of preparatory functions used in CNC milling examples in this text. Other codes commonly used on General Numeric controllers are also listed.

- G36-Rapid traverse positioning.
- G01-Linear interpolation (feedrate movement).
- G02-Circular interpolation clockwise.
- G03-Circular interpolation counterclockwise.
- G04-Dwell.
- G10-Tool length offset value.
- G17-Specifies X/Y-plane.
- G18-Specifies X/Z plane.
- G19-Specifies Y/Z plane.
- G20-Inch data input (on some systems).
- G21-Metric data input (on some systems).
- G22-Salety zone programming.
- G23-Cross through safety zone.
- G27-Reference point return check.
- G28-Return to reterence point.
- G29—Return from reference point.
- G30-Return to second reference point.
- G40-Cutter diameter compensation cancel.
- 641-Cutter diameter compensation left.
- G42-Cutter diameter compensation right.
- G43-Tool length compensation positive direction.
- G11- Tool length compensation negative direction.
- G45-Tool offset increase.
- G45-Tool oliset decrease.
- G47-Tool offset double increase.
- G48—Tool offset double decrease.
- G49-Tool length compensation cancel.
- G50-Scaling off.
- G51-Scaling on.
- G73—Peck drilling cycle.
- G74-Counter spping cycle.
- G76-Fine boing cycle
- G80-Canned cycle cancel
- GB1-Drilling cycle.
- G82-Counter boring cycle.
- G83-Pack drilling cycle.
- G84—Tapping cyclo.
- G85-Boring cycle (leed return to reference level).
- G86-Boring cycle (rapid return to reference level).
- G87-Back boring cycle.
- G88-Boring cycla (manual return).
- 689-Boring cycle (dwell before feed return).
- GSD-Specifies absolute positioning.
 - G91-Specifies incremental positioning.
 - G92-Program absolute zero point.
 - G98-Return to initial level.
 - G99-Return to reference (A) level.

4