| Seat No.: | Enrolment No. | |-----------|---------------| |-----------|---------------| Subject Code: 161906 ## GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION - WINTER 2013 Date: 09-12-2013 | Subject Name: Heat and Mass Transfer | | | | | |--------------------------------------|---------------|---|-----------|--| | | | 2:30 pm to 05:00 pm Total Marks: 70 | | | | Instr | | | | | | | | Attempt all questions. | | | | | | Make suitable assumptions wherever necessary. | | | | | 3. | Figures to the right indicate full marks. | | | | Q.1 | (a) | Derive general heat conduction equation in cylindrical coordinate system. | 07 | | | | (b) | Explain Frick's Law of Diffusion also explain its analogous with Newton's low of viscosity and Fourier's equation of heat-transfer | 07 | | | Q.2 | (a) | In a counter flow heat double pipe heat exchanger ,water is heated from 25^{0} C to 65^{0} C by oil with specific heat of 1.45 kJ/kg K and mass flow rate of 0.9 kf/s. The oil is cooled from 230^{0} C to 160^{0} C. If overall Heat transfer coefficient is 420 W/m^{20} C. calculate following (i) The rate of heat transfer (ii) The mass flow rate of water , and | | | | | (b) | (iii) The surface area of heat exchanger Derive equation of logarithmic mean temperature difference for parallel flow | 07 | | | | | Heat-exchanger. | | | | | (7.) | OR | ~= | | | | (b) | Derive an expression for heat transfer for an adequately long of Rectangular fin with insulated tip. | U/ | | | Q.3 | (a) | Discuss the careept of thermal boundary layer in case of flow over the plates. How it differ from velocity boundary?. | 07 | | | | (b) | A copper pipe is maintained at 50° C. It is having dimension of 50 mm diameter and eagth 1 m. It is placed in atmosphere, where air is having temperature of 30° C and flowing at speed of 3m/s. Use the co-relation Nu = 0.023 (Re) $^{0.805}$ calculate the heat loss from the pipe. | 07 | | | Q.3 | (a) | State the relationship between Nusselt, Grashoff and Prandtl number in case of | 07 | | | | (I -) | heat transfer by nature convection from a vertical plate
A gas pipe is kept in an atmosphere of 20 ^o C. The radious of pipe is 3.75cm and | 07 | | | | (D) | A gas pipe is kept in an atmosphere of 20 °C. The radious of pipe is 5.73cm and is lagged with insulation thickness of 2.5cm. The emissivity of the surface is 0.9. The length of pipe is 6m. surface temperature ts= 80° C calculate (i) The total heat loss from pipe (ii) The overall heat transfer coefficient (iii) The heat transfer co efficient due to only radiation. The property of air at 50° C are : $\rho = 1.092 \text{ kg/m}^3$, | U7 | | | | | $k = 27.81 \times 10^{-3} \text{ W/m}^{0}\text{C}, \mu = 19.57 \times 10^{-6} \text{ kg/ms} \qquad \sigma = 5.67 \times 10^{-8} \text{ C}_{p} = 10.57 \times 10^{-8} \text{ M/m}^{-1}$ | | | | 0.4 | (5) | 1.007 kJ/kg ^o C for convection use co-relation Nu =0.53(Gr.Pr) ^{1/4} | 07 | | | Q.4 | (a) | Derive expression for Radiation Heat exchange between two concentric infinite long grey cylinder | 07 | | | | (b) | The flat floor of a hemispherical furnace is at 800 K and has emissivity of 0.5. The corresponding value for the hemispherical roof are 1200 K and 0.25. Determine the net heat transfer from roof to floor. Take $\sigma_b = 5.67 \times 10^{-8}$. | 07 | | | Q.4 | (a) | What are Fourier and Biot Number? What is the physical significance of these number? | 07 | |-----|------------|---|----------| | Q.4 | (b) | A solid sphere of 1 cm made up of steel is at initially at 300^{0} Ctemperature. Properties of steel: k =60 WmK Density = 7800 kg/m^{3} , sp. Heat =434J/kg K Calculate the time required for cooling it up to 50^{0} Cin the following two cases (i) cooling medium is air at 25^{0} Cwith h = 20 W/m^{2} K (ii) cooling medium is water at 250 C with h = 100 W/m^{2} K | 07 | | Q.5 | (a)
(b) | Explain term Boiling also explain various regimes of boiling Explain with neat sketch Boundary Layer concept and show velocity boundary layer growth due to flow over plate OR | 07
07 | | Q.5 | (a) | Define condensation process also explain film condensation and drop-wise | 07 | | | (b) | condensation Answer following | 07 | | | (0) | (1) Define following terms related to mass transfer | 07 | | | | (i) Prandtal Number Pr (ii) Schmidt number Sc | | | | | (iii) Lewis number Le (iv) Sherwood number Sn(2) Define Heat exchanger Give classification of Heat exchanger | | | | | (2) 2 sime rich cheminger er i e chassimon er rich e | | | | | ****** | | | | | | | | | | downloaded from College | | | | | Sillo | | | | | | | | | | | | | | | | |