GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER – VI • EXAMINATION – WINTER 2012

Subject code: 161905 Date: 07/01					
Sub Tim	ject e: 02	Name: Control Engineering2.30 pm - 05.00 pmTotal Marks: 70			
Instructions:					
	1. 2. 3.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.			
Q.1	(a)	(1) Define the following term.I. Open loop control.II. Close loop control.	02		
		(2) Obtain a system equation for the mechanical system shown in figure. $B_1 \downarrow I$ κ_1	05		
		M ₂			
	(b)	Solve the block diagram shown in Figure Obtain its transfer function.	07		
		H_{2}			
Q.2	(a)	(1) What is the mathematical model?	02		

(2) Obtain Transient response of first order systems to unit step input and obtain **05** the value of steady state error.

(b) What is a signal flow graph? What are Properties of signal flow graph? State 07 and explain Mason's gain formula for signal flow graph.

(b) Sketch the root loci for the following system.

$$G(s) = \frac{K}{s(s + 1)(s + 2)}, \quad H(s) = 1$$

P.T.O.

Download all NOTES and PAPERS at StudentSuvidha.com

1

07

Q.3	(a)	(1) Define the following term.I. Rise time.II. Delay time.	02
		(2) An unity feedback system has a loop transfer function $G(s) = \frac{10(S+1)}{S(S+2)(S+5)}$	05
		Determine: I. Stability gain. II. Step, ramp, parabolic error coefficient.	
	(b)	Write a short note on state space representation of a control system.	07
Q.3	(a)	(1) State 'Angle condition' and 'Magnitude condition' of root locus method.	02
		(2) Explain in detail about Proportional control action.	05
	(b)	Define programmable logic controller. What are the components of PLC? State the Advantages & Disadvantages of it.	03 07
Q.4	(a)	(1) What is root locus method?	02
		(2) Write a short note on Adaptive Control System.	05
	(b)	Describe a DC servomotor control system. Draw the simplified block diagram of the DC servo motor system. Derive the transfer function for the above system.	07
Q.4	(a)	(1) Define Fuzzy Logic.	02
		(2) Compare hydratelic and pneumatic control system.	05
Q.4	(b)	Describe working of hydraulic proportional plus derivative controller and derive expression for its performance.	07
Q.5	(a)	(1) Define hydraulic system.(2) Write short note on Dashpots.	02 05
	(b)	Describe working of hydraulic speed control for i.c. engine and derive expression for its performance.	07
o =		OR	0.0
Q.5	(a)	 (1) Define following term Proportional lag. Controlled lag. Find the stability of control system having following characteristic equation. 	02 05
		$a(s) = s^{6} + 4s^{5} + 3s^{4} + 2s^{3} + s^{2} + 4s + 4.$	
	(b)	P.T.O.	07

(b) Consider the liquid-level control system shown in Fig. Assume that the set point of the Controller is fixed. Assuming a step disturbance of magnitude Do, determine the error. Assume that Do is small and the variations in the variables

2

Download all NOTES and PAPERS at StudentSuvidha.com

from their respective steady-state values are also small. The controller is proportional. If the controller is not proportional, but integral, what is the steady-state error?

