\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI • EXAMINATION - SUMMER • 2014

Subject Code: 161903
Subject Name: Computer Aided Design
Time: 10:30 am - 01:00 pm
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 4 (a) Derive the Potential Energy equation for the spring system shown in figure 1. Determine the displacements of nodes of the same using the minimum potential energy principle. Take $\mathrm{k}_{1}=\mathrm{k}_{2}=40 \mathrm{~N} / \mathrm{mm}, \mathrm{k}_{3}=60 \mathrm{~N} / \mathrm{mm}, \mathrm{k}_{4}=90 \mathrm{~N} / \mathrm{mm}, \mathrm{P}_{2}=100 \mathrm{~N}$ and $\mathrm{P}_{3}=$ 60 N .

Figure 1
(b) Determine the displacements of nodes and elemental stresses for the bar as shown in
figure 2. Take: $\mathrm{A}_{1}=400 \mathrm{~mm}^{2}, \mathrm{~A}_{2}=500 \mathrm{~mm}^{2}, 1_{1}=\mathrm{l}_{2}=200 \mathrm{~mm}, \mathrm{l}_{3}=250 \mathrm{~mm}, \mathrm{P}_{1}=\mathrm{P}_{2}=$ 10 kN and $\mathrm{E}=200 \mathrm{GPa}$.

Figure 2
OR
Q. 4 (a) Determine the displace ents of nodes for the bar as shown figure 3. Take $P_{2}=P_{3}=20 \quad \mathbf{0 7}$ $\mathrm{kN}, \Delta \mathrm{T}=30^{\circ} \mathrm{C}$.
Use the following ata.

0 \begin{tabular}{c|c|c|c|c|}
\(\substack{Area

\left(\mathrm{mm}^{2}\right)}\) \& | Length |
| :---: |
| (mm) | \& | E |
| :---: |
| (GPa) | \& | α |
| :---: |
| $\left(\mathrm{per}^{\circ} \mathrm{C}\right)$ |

\hline \& 1000 \& 400 \& 80 \& 23×10^{-6}

\hline 2 \& 600 \& 300 \& 200 \& 12×10^{-6}

\hline 3 \& 1000 \& 400 \& 80 \& 23×10^{-6}

\hline
\end{tabular}

Figure 3
(b) Consider the bar shown in figure 4. Determine the nodal displacement and elemental stresses. Apply boundary conditions using penalty approach. Take $\mathrm{P}=60 \mathrm{kN}$.
Use following data.

Element	Area $\left(\mathrm{mm}^{2}\right)$	Length (mm)	E (GPa)
1	100	250	80
2	200	250	200

Figure 4
Q. 5 (a) Explain the steps involved in the solution of static structural problem using finite element method.
(b) Sketch 2D and 3D elements used in FEA with usual notations.
(c) Explain the following with reference to optimization:
i) Objective function
ii) Constraints
iii) Linear Programming Problem (LPP)
iv) Non-linear Programming Problem (NLPP)

OR

Q. 5 (a) A manufacturer produces two types of machine parts, P1 and P2, using lathes and milling machines. The machining time required by each part on the lathe and the milling machine and the profit per unit of each part are given below:

Machine part	Machining time (Hrs/piece)	Profit per unit	
	Lathe		
	5	2	Rs. 200

If the totta machining times available in a week are 500 hrs on lathe and 400 hrs on milling nachines, determine the number of units of P1 and P2 to be produced per week to maximize the profit.
(b) An uncovered rectangular water tank with a square base is to be lined with sheet copper. If the tank is to hold 1000 litre of water, find the dimensions of the tank for minimum amount of copper. Also find the surface area of tank.

