Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- Vth SEMESTER-EXAMINATION - MAY/JUNE - 2012

-		de: 151905 Date: 06/06/2	2012
•		ame: Machine Design-I 30 pm – 05:00 pm	s• 7 0
	uctio	•	5. 70
		npt all questions.	
		e suitable assumptions wherever necessary.	
3.	Figui	res to the right indicate full marks.	
Q.1	(a)	(i) Explain the importance of Wahl's stress factor in spring design.	07
	(b)	(ii) State and explain the factors affecting selection of spring materials.Design a helical compression spring from the following data:	07
		Minimum load = 100 N	
		Maximum load = 225.6 N	
		Compression of spring = 10 mm Permissible shear stress for spring material = 440 Mpa	
		Spring end – square and ground ends	
		Modulus of rigidity for spring material = $0.80 \times 10^5 \text{ MPa}$	
Q.2	(a)	(i) Explain the friction materials used in friction clutches.	07
	(b)	(ii) Explain the difference between single plate and multiplate clutch.	07
	(b)	The following specification refers to a centrifugal clutch: Power to be transmitted = 15 kW	U/
		No. of shoes = 4	
		Angle subtended by the shoe at centre = 60°	
		Inner radius of $drom = 150 \text{ mm}$	
		Distance of \mathbf{C} . of shoe from the centre of the spider =120 mm	
		Coefficient of friction the shoe and drum = 0.25	
		Running Speed = 900 r.p.m.	
		Show engagement starts at Speed = $\frac{3}{4}$ th of the Running Speed Peonissible pressure intensity = 0.10 MPa	
		Find (i) capacity of the clutch Mass of each shoe and (ii) size of each shoe.	
		Time (i) elepacity of the clutch wass of each shoe and (ii) size of each shoe.	
		OR	
	(b)	Design a single plate clutch considering uniform wear criterion and	07
		effective	
		one pair of contacting surfaces from the following specification: Power to be transmitted = 18.5 kW	
		Speed = 750 r.p.m.	
		Outer diameter = 2 times internal diameter	
		Permissible pressure for the lining = 1 MPa	
		Coefficient of friction = 0.20	
		Permissible stress for shaft material = 45 MPa	
Q.3	(a)	(i) Explain the different types of stresses induced in a belt with neat sketch.	07
	41.3	(ii) Write a note on belt materials.	07
	(b)	The following data refers to flat belt drive Power to be transmitted = 15 kW	07
		Motor speed = 1440 r.p.m.	

Coefficient of friction=0.35 Permissible stress for belt material = 2.25 Mpa Belt thickness = 5 mmCalculate (i) pulley diameters (ii) length and width of the belt OR **Q.3** (a) (i) Explain the step by step procedure used for chain drive selection. 07 (ii) State the different belt tension adjustment devices and explain one of them in detail with neat sketch. **(b)** V-belt drive has the following specification: 07 Power to be transmitted = 30 kWMotor speed = 1440 r.p.m.Machine pulley speed =480 r.p.m. Centre distance between two pulleys = 1 mApproximate Allowable belt speed = 20 m/sec Coefficient of friction=0.20 Density of belt material = 1000 Kg/m^3 Cross sectional area of V belt = 700 mm^2 Find the no. of v-belts required and pulley diameters neglecting the slip of the belt. (a) State the different equations used for thick cylinder design with their **Q.4** 07 conditions and limitations. **(b)** Design a journal bearing from the following data: 07 Radial load = 20 kN diameter of journal 100 mm Speed of journal = 900 r.p.m. oil SAE 10 with viscosity at 55° C = 0.017 kg/m-sec ambiento imperature = 15.5° C maximum bearing pressure = 1.5 Mpa permissible rise in oil temperature = 10^{0} C heat dissipation coefficient = 1232 W/m²/⁰C L/D ratio = 1.6 Design parameter ZN/p = 28clearance ratio = 0.0013specific heat of oil = 1900 J/kg/°C OR **Q.4** (a) (i) State and Explain the factors affecting the selection of a suitable 07 antifriction bearing. (ii) Explain the effects of the L/D ratio and C/D ratio parameters on the performance of journal bearing. **(b)** A hydraulic press has the following specifications: **07 Q.4** Capacity = 80 kNFluid pressure = 16 MPa Stroke = 80 mmPermissible tensile stress for pillar and ram = 75 MPaPermissible stress for C.I. cylinder = 30 MPa Distance between the center line of pillars = 800 mm Distance between top supporting platform and

Speed of driven pulley = 480 r.p.m.Density of belt material = 950 Kg/m^3

belt speed = 20 m/sec

Centre distance between two pulleys = 810 mm

Modulus of elasticity for belt material = 100 MPa

bottom of top plate when the ram is in the down most position = 800mm Design the ram, cylinder and pillars.

Q.5 (a) Explain Goodman's and Soderberg's diagram with neat sketches. 07 **(b)** Answer the following (any TWO) **07** (i) Explain the wear considerations in design. (ii) Explain the important considerations to be considered in casting design. (iii)Explain Hertz contact stresses in detail. OR **Q.5** (a) (i) What do you meant by standardization? Explain the use of standardization in 07 design. (ii) Explain the assembly considerations in machine design. **(b)** The following data refers to a transmission shaft: **07** [torsional moment that varies from = -100 Nm to + 600 Nm. ultimate tensile strength = 630 Mpayield strength = 360 MPa, stress load correction factor = 0.6size correction factor = 0.85Surface finish factor = 0.8. reliability factor = 0.897factor of safety = 2Calculate the shaft diameter using distortion energy theory of failure. downladed from Collins Collins