www.studentsuvidha.in

B.E.
Fifth Semester Examination, May-2009

PRINCIPLESOF OPERATING SYSTEM

Maote : Attempt any five questions.

Q. 1. (a) What are the advantages of multiprocessor system? Deseribe the difference between symmet-
ric and asymmetric multiprocessing.

Ans. Multiprocessor systems have more than one processor in close communicating, sharing the com-
puter bus, the clock and sometimes memory and peripheral devices. These systems are referred to as tightly
coupled systems. Advantages of multiprocessor system are :

1. Increased Thoughtput :

By increasing the number of processors we hope to get more wo:l. done in & short period of time. For a
heavy work, we use multiprocessor system. The speedup ratio for a processor system less than n.

2. Increased Reliability :

a

If function can be distributed properly among several processors, then the failure of one processor will
not halt the system, but rather will only slow it down. This ability to continue providing service proportional to
the level of surviving hardware is called graceful degradation,

3. Resource Sharing :

Many resources are shared by all the processors available. Many processes make use of a resource by
sharing it.

4. Money Saving :

Multiprocesses can also save money compared to multiple single systems because the processors can
share peripherals, cabinets; power supplies.

There are two types of multiprocessing : Symmetric & asymmetric. Thep most common multiple-proces-
sor systems use the symmetric-multiprocessing model, in which each processor runs an identical copy of the
operating system and these copies communicate with one another as needed.

Some systems use asymmetric multiprocessing, in which each processes is assigned a specific task. A
master processor controls the system; the other processors either look to the master for instruction or have
predefined tasks. This scheme defines a master-slave relationship. The master processors schedules & allo-
cates work to the slave processors.

An example: if the symmetric multiprocessor system is Encore's version of UNIX for the multimax com-
puter. This mmputnr can be configured to employ dozens of processors, all running a copy of UNIX.

A symmm:: multiprocessing is more common is extremely large systems, where one ufmnmmnma-
consuming activities is simply processing input/output.

http://studentsuvidha.in/

www.studentsuvidha.in

Q. L (b) Differentiate between the following :

() Buffering and Spooling

(i) System programs and System calls

(ili) Client-Server systems and Peer-to-Peer systems.
Ans. (i) Buffering and spooling : -

Buffering is to make available a memory to store data temporarilly, so that the computer is freed up quickly
& doesn't have to wait for a slower input/output device, e.g., for printing pages we can first store pages in a
bufTer memory & then print pages easily from the bufTer.

Spooling, in essence, uses the disk as a huge buffer, for reading as for ahead as possible on input devices
ard for storing output files until the output devices are able to accept them. Spooling is also used for process-
ing data at remote sites. The CPU sends the data via communications paths to a remote printer. The remote
processing is done at its own speed, with no CPU intervention. The CPU just needs to be notified when the
processing is completed, so that it can spool the next batch nf data,

Buffering & spooling both are used to keep both thy, ﬂmdﬂmmpuﬂmﬂmtd:mwnrkmgumuch
higher rates.

(i) System programs & system calls :

System calls provide the interface between a process & the operating system. These calls are generally
available as assembly-language instructions, and are usually listed in the manuals used by assembly-language

programmers. Some systems may allow system calls to be made directly from a higher-level language program,
in which case the calls normally resemble pm-deﬁned function or subroutine calls.

A.sm:plepruym-n is system make heavy use of system calls. System calls are needed for every thing done
in a program. Some of the system calls for file manipulation are : Create file, delete file, open, close, read, write,
reposition, get file attributes, set file attributes.

System programs provide a more convenient environment for program development & execution. Some of
them are simply user interfaces to system calls, whereas others mmstdtmblyrmmcmtphl They can be
divided into several categories :

l. File manipulation.

Status information.

File modification.
Programming-language support.
Program loading & execution
Communications

Application programs.

S Y R S

http://studentsuvidha.in/

www.studentsuvidha.in

Most important system program for an operating system is the command mwrp|uar the main function of
which is to get and execute the next user-specified command.

A svstem program may make use of many system calls. System call is the smallest identity of any system
program running in the system.

(ui:i Client-server systems & peer-io-peer systems :

[n 2 client server model the data are stored on powerful computers called sérvers. The unu:—luyacs have

simpler machine called clients. The client sends the request to the server and the server fulfill the request of the
client, '

+

Client

N/W
Reply

Client -

Two processes are involved, one on the client machine & one on the server machine. Communication task
the form of the client process sending a message over the network to the server process. The client than wants
for a reply message. When the server process gets the request, it performs the work or look up the requested
data & sends a reply.

Another type of person-to-person communication often goes by the name of peer-to-peer communica-
tion, to distinguish it from the client-server model, In this form, individuals who form a loose group, can
communicate with other in the group. Every person can, in principle, communicate with one or more other
people, there is no fixed division into clients & servers. .

¥ >

el

Peer-to-peer communication really hit the big time around 2000 with a service called Napster.

http://studentsuvidha.in/

www.studentsuvidha.in

Q. 2. (a) Consider the following processes with arrival time and execution time as indicated :

Process Arrival Time Burst Time
Pl 0.0 8
Pz 0.4 4
P3 , 1.0 1

Cakulate Average Waiting Time and Average Turn around Time using :
(@ FCFS

(if) SJIFnon-preemptive

(i) SIFpreemptive.

Ans, (i) Using FCFS :
Py P2 |'Ps
0 B 12 13
Gantt chart for FCFS.
ST, 0+(8-4)+(12-1)
Average waiting time = 3
76+11 186
= 3 :——:i—n:ﬁ_'z
; E+{t2-.4}+[13-l]
ﬁvmg_:tumnml.mdtlmc = 3
=E+11Jﬁ+12=3].ﬁ=mﬂ‘
3 3
(ii) 5JF non-preempiive :
P | P3 | P2
0 g 9 13

Ganit chart for SJF non-preemptive

http://studentsuvidha.in/

www.studentsuvidha.in

_0+(9-4)+(8-1)

Average waiting time 3
_B6+7 =}E=52
3
8+(13-4)+(9-1)
Average tumn around time 5 A :
=l+12.ﬁ+3=23.ﬁ=953
3 3
(iif) SJF Preemptive :
AR |IB R P
0 4 I 2 54 13
Gantt chart for SJF preemptive
O0+(54-4))+(4)+0
Average waiting time ={ (54-4))+(4) _S+i4
3 d3
5+14 64
S——=—=1133
3 3
0+ 13)+(54-4)+(2-1 5 9
Average turnaround time ,':)+ Jd! }=I3+ "’ltL#ﬂ]_

3 3 3
Q. 2. (6) What is process? Describe seven state model for process.

Ans. A process is a program in execution. The execution of a process must progress is a sequential
fashion. That is, at any time, at most one instruction is executed on behalf of the process.

- A process is more than the program code. It also includes the current activity, as represented by the value
of the program counter and the contents of the processor's registers. A process generally also includes the
process stack, containing temporary data and a data section containing global variables.

http://studentsuvidha.in/

www.studentsuvidha.in

Diagram of process states is given as .

Diagram of process state

As a process executes, it changes state. The state of a process is defined in part by the current activity of
that process. Each process may be in one of the following states .

L. New:
The process is being created.
1. Running :
Instructions are being executed. .
3. Waiting ; ' .

The process is waiting for some event to occur (such as an inpuu'wtput completion or recep-
tion of a signal).

4. Ready:

The process is waiting to be assigned to a processor.
5. Terminated :

The process has finished execution.

Q. 3. (a) Discuss the similarities and differences between paging and segmentation. What are advan-
tages of combining paging with segmentations?

Ans. A possible solution to the external fragmentation problem is to permit the logical address space of a
processes to be non-contiguous, thus allowing a process to be allocated physical memory wherever the lather
is available. One way of implementing this sclution is through the use of paging avoids the considerable

http://studentsuvidha.in/

www.studentsuvidha.in

problem of fitting the varymg—smdmmqrdnmhmmmehckmgm fmmwhmh most of the prévious
memory-management schemes suffered. ;

In paging physical memory is broken into fixed-sized blocks called frames. Logical memory is also broken
into blocks of the same size-called pages. When a process is to be executed, its pages are loaded into any
- available memory frames from the backing store. The backing store is divided into fixed-sized blocks that use of
the same sizes as the memory frames.

When we use a paging schemes, we have no external fragmentation. Anyﬁeeﬁmumbtalhwndma
process that needs it. However, we have some internal fragmentation.

An important aspect of memory management that became unavoidable with paging is the separation of
the user's view of memory & the actual physical memory. The user's view of memory is not the same as the
actual physical memory. The user's view is mapped onto physical memory. The mapping allows differentiation
between logical memory & physical memory.

The user prefers to view memory as a collection of variable-sized segments, with no necessary ordering
. among segments. Segmentation is a memory-management scheme that supports this user view of memory. A
logical address space is a collection of segments. Each segment has a name & length. The address specifies
both the segment name and the offset within the segment. The user therefore specifies each address by two
quantities a segment name & an offset.

As occur with paging, this mapping requires two memory references per logical address, effectively
showing the computer system by a factor of 2. The normal solution is to use a set of associative registers to
hold the most recently used segment-table entries.

Segmentation may cause external fragmentation, which is not in paging.

Both paging & segmentation have their advantages & disadvantages. In fact, of the two most popular
microprocessors now being used, the motorola 68000 line is designed based on a flat address space, where is
the Intel 80 x 86 family in based on segmentation. Both are merging memory models toward a mixture of paging,

segmentation. [t is possible to combine these two schemes to improve on each. This combination is best
illustrated by two different architectures—the innovative but not widely used MULTICS system & the Intel 186.

Q. 3. (b) Consider the following pages reference string :
1,2,3,1,4,5,6,2,1,3, 2.&.513. 4,1,2,6

How many page faults would occur for the following r:pllmenul:urﬂtmmulillph frames? All
frames are initially empty :

http://studentsuvidha.in/

www.studentsuvidha.in

{ii LRU
(i) FIFD
(iii) Optimal
Ans. () LRU:
2 3 I 4 5 6 3127
I 1 1 | | 2132 634126
2 i & 2 2 2 2
3 3 k] 3 3
4 4 4 4
5 5 7
6 6
There are total seven page faults.
(ii) FIFO :
2 3 1 4 5 6 2132
2 2 2 2 2 2
3 3 3 3
4 4 4 4
5 5 5
6 6
1 2 6

L= V.Y B S WFSR P Y
] o] b2 =] 3

http://studentsuvidha.in/

www.studentsuvidha.in

There are nine page faults.
{iii} Optimal :
L) 3 | 4 - 6 21327 63412 b
1 1 1 1 l 1 . 1 _ 1
2 1 2 2 7 7
3 3 3 3 3
) 4 i 4 4
5 3 5 2
L 6 b
There are eight page faults.

Q. 4. (a) Discuss various file allocation and access methods. Compare their advantages and disadvan-
tages.
Ans. Different allocation methods for the file system are ;

1. Contiguous Allocation :

The contiguous allocation method requires each file to occupy a set of contiguous blocks on the disk.
Disk addresses define a linear ordering on the disk.

Contiguous allocation of a file is defined by the disk address and length of the first block. If the file is n
blocks long, and starts at location b, then it occupies b, b+1....... b + n —1. The directory entry for each file
indicates the addresses of the starting. Block & the length of the area allocated for this file.

Accessing :

A file that has been allocated contiguously is easy for sequential access, the file system remembers the
disk address of the last block referenced and, when necessary, reads the next block. For direct access to block,
of a file that starts of block b, we can immediately access block bit. Thus, both sequential and direct access can
be supported by contiguous atlocation.

One difficulty with contiguous allocation is finding spaee for a new file.

The contiguous disk-space-allocation problem can be seen to be a particular application of the general
dynamic storage-allocation problem, which is how to satisfy a request of size n from a list of free holes. This will
create a problem of external fragmentation in contiguous allocation.

http://studentsuvidha.in/

www.studentsuvidha.in

<

lo0'020 30 . ' '
+0s0s0 70 File Start Length
s[Je[J1e = 2 42
|2D53D14D;5U TR
Contiguous allocation of disk space

There are other problems with contiguous allocation. A major problem is determining how much space is
needed for a file. When the file is created, the total amount of space it will meed must be found & allocated.

The avoid several of these drawbacks, some operating system use a modified contiguous allocation
scheme, in which a contiguous chunk of space is allocated initially, then, when that amount is not large enough,
another chunk of contiguous space, an extent, is added to the initial allocation, The location of a file's block is
then recorded as-a location and a block count, plus a link to the first block of the next extent.

1. Linked Allocation :

Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a linked
list of disk blocks; the disk blocks may be scatiered anywhere on the disk. The directory contains a pointer to
the first & [ast blocks of the file. For e.g., a file of five blocks might start at block 9, continue at block 16, then
block 1, block 10 & finally block 25, Each block contains a pointer lo next block.

To create a new file, we si-m]:rl:',r create a new entry in the directory with linked allocation, each directory
entry has a pointer to the first disk block of the file. . ;

There is no external fragmentation with linked allocation and any free block on the free-space list can be
used to satisfy a request.

Linked allocation also have disadvantages. The major problem is that it can be used effectively for only
sequential-file access, To find the ;th block of a file, we must start at the beginning of that file and follow the

pointers until we get the ;th block. Each to a pointer requires a disk read, and sometimes a disk seek.
Consequently, it is sufficient to support a direct-access capability for linked allocation files.

Another disadvantage is the space required for the pointers. Enchﬁlemqmmsmwmurespmeman itis
of one another problu'n is reliability.

An important variation on the linked allocation method is the use of a file-allocation table (FAT).

http://studentsuvidha.in/

www.studentsuvidha.in

TN g

File Stant Length
It;r 18

3, Indexed Allocation @

Linked allocation solves the external fragmentation and size-declaration problem of contiguous alloca-
tion. However in the absence of a FAT, linked allocation can't support with the blocks themselves all over the
disk & need to be retrieved in order. Indexed allocation solves this problem by bringing all the pointers together
into one location the index block. Each file has its own index block, which is an array of disks-block addresses.

The i entry in the index block prints to the i™ block of the file. The directory contains the address of the

incex block. To read the i i™ block, we use the pointer in the i™ index block entry to find and read 1o desired
block. Indexed allocation supports direct access, without suffering from external ﬁ'ngmenmtmns because any
free block on the disk satisfy a request for more space.

Diﬂ:ciory
File Index Block
— 19
16
9] 1
200] 21[] 220 23|:| s
Indexed allocation of a file

Indexed allocation does suffer from wasted space. The pointer overhead of the index block is generally
greater than the pointer overhead of linked allocation.

http://studentsuvidha.in/

www.studentsuvidha.in

(. 4. (b) Give advantages of Distributed system over Cmﬁ’nlh.ad system.

Ans. In distributed system, the various processors communicate with one another through various
communication uses such as high-speed buses or telephone lines. Thése system are also called loosely
coupled system. Advantages of distributed system as @

1. Resource Sharing :

If a number of different sites are connected to one another, then a user at one site may be able to use the
resources available at another. In general, resource sharing in a distributed system provides mechanisms for
sharing files at remote sites-processing information in a distributed database, printing files at remote sites,
using remote specialized hiw devices, performing other operations.

1. Computation Speed up :

If a particular computation can be partitioned into a number of §ub—mpuminns that can run concur-
rently, then a distributed system may allow us to distribute the computation among the various sites. This will
do the computation in a much less time.

3. Reliability :

If one site fails in a distributed system, the remaining sites can potentially continue operating, 1f the
system is composed of a number of large autonomous installations, the failure of one of them should not affect
the rest. The system can continue with its operation even if some of its sites have failed.

4. Communication :

There are many instances in which programs needs to exchange data with one another on the system.
When many sites are connected to one another by a communication network, the processes at diff. sites have
the opportunity to exchange information user may initiate file transfers or communicate with one another via
electric mail. A user can send mail to another users at the same site or at a different site.

(. 5. (a) Discuss the following :
(i) Critical section problem
(i) Racecondition

(iii) Priority inversion problem
() Monitors.

Ans. (i) Critical section problem :

Consider a system consisting of n processes (Py, Py, Ps...... P,_y) . Each process has a segment of code,

called a critical section, in which the process may be changing common. Variables, updating a table, writing a
file & so on. The important feature of the system is that, when one process is executing in its critical section, no
- other process is to be allowed to execute in its critical section. Thus, the execution of critical sections by the
process is mutually exclusive in time. The critical section may be followed by an exit section. The remaining
code is the remainder section,

http://studentsuvidha.in/

www.studentsuvidha.in

A solution to the critical-section problem must satisfids the Yollowing three requirements :
1. Mutual Exclusion :

If process P, is executing in its critical section, no other process can be executing in their critical sections.

2. Progress ;

If no process is executing in its critical sections their exist some process that wish to enter their critical
section & their exist some process that wish to enter their critical sections, then only those processes that are
not executing in their remainder section can participate in the decision of which will enter the critical section.

(i) Race Condition :

There exist a bound on the number of times that other processes are allowed to enter their critical section
atter a process has made a request to enter its critical section & before that request is granted.

A situation, where several processes access and manipulate the same data concurrently and the outcome
of the execution depends on the particular order in which the access takes place, is called a race condition. To
guard against the race condition, we need to ensure that only one process at a time can be manipulating the
variable to make such a guarantee, we require some form of synchronizatiun of the processes, Such situations
occur frequently in-operating systems as different parts of the system manipulate resources and are want the -
changes not to interfere with one another.

(iif) Priority Inversion Problem :

For the case where we use preemption, we have to breempt one process by another. When a higher
priority process comes, we have to replace if by a lower priority process. But what happens if the higher-priority
process needs to read or modify kernel data that are currently being accessed by another, lower-priority one to
finish. This situation is know as priority inversion problem_ In fact, there could be a chain of processes, all
accessing resources that the high-priority process needs. This problem can be solved via the priority-inherit-
ance protocold in which all these processes (the processes that are accessing resources that the-high-priority
process needs) inherit the priority until they are done with the resources. When they are finished, their priority
reverts to its natural value,

(iv) Monitors :

Monitor is a high-level synchronization construct. A monitor is characterized by a set of programmer-
defined operators. The representation of a monitor type consists of declarations of variables whose values
define the state of an instance of the type, as well as the bodies of pmm or functions that implement
operations on the type.

The representation of a monitor type cannot be used directly by the various processes. Thus, a procedure
defined within a monitor can access only those variables declared locally within the monitor and the formal
parameters. Similarly, the local variables of a monitor can be accessed by only the local procedures.

The monitor construct ensures that only one process at a time can be active within the monitor. Conse-
quently, the programmer doesn't need to code this synchronization constraint explicitly. These mechanisms are

http://studentsuvidha.in/

www.studentsuvidha.in

provided by the condition construct.

Q. 5. (b) What is binary semaphore? Implement wait() and signal () without busy wait for binary
semaphores. With the help of binary semaphore implement the counting semaphore.

Ans. The.semaphore is a binary semaphore with an integer vajue that can range only b/'w 0 and 1. A binary
semaphore can be simpler to implement than a counting semaphore, depending on the underlying hardware
architecture, We will now show how a counting semaphore is implemented using binary semaphores.

(1

Let S be a writing semaphore. To implement it in terms of binary semaphore we need the following :
data structures :
var 51 : binary_semaphore;
52 : binary_semaphore;
53 : binary _ semaphore;
C : integer,
Initially S1 =83 = 1, 52 =0, & the value of integer C is set to the initial value of the counting semaphore S.
The wait operation on the counting semaphores can be implemented as follows :
wait (83);
wait (S1);
C:=C- I :
ifC<0
then begin
signal (S1);
wait (52);
end
else signal (S1);
signal (S3);
The signal operation on the counting semaphore S can be implemented as follows :
wait (51);
Ci=C+;
if C < then signal (82);
signal (S1);

http://studentsuvidha.in/

www.studentsuvidha.in

The 53 semaphore has no effect on signal (S), it merely serializer the wait (S) operations.

(. 6. Explain input/output device organization? Describe input/output interrupts and input/output buff-
ering,

Ans. The operating system organizes the input/output devices into categories to form a general applica-

tion input/output interface. Fig. illustrates how the input/output related portions of the kernel are structured in
software layers. :

Kemel
' E Kemel I/o Subsystem
21 scsl | Keyboard| Mouse PCl bus | Floppy | ATAPI
device | device device |---| device | device | device
driver | driver driver driver driver | driver
g sCsl | Keyboard| Mouse PClbus | Floppy | ATAPI
device | device device |...| device device | device
driver | driver driver driver | driver' | drivet
L L
[T 1 I
SCSI | |Keyboard| | Mouse PCI bus| |Floppy disk}| | ATAPI
device | | - drives devices

The purpose of the device-driver layer is to hide the differences among device controllers from the input/
output subsystem of the kemel, much as the input/output system calls encapsulate the behaviour of devices
in a few generic classes that hick hardware differences from applications, Making the input/output sub-system
independent of the hardware simplifies the job of the operating system developer. It also benefits the hiw
manufacturers. They either design new devices to be compatible with an existing host controllers interface, or
they write device drivers to interface the new hardware to popular operating systems.

Devices may very in many dimensions :
(i) Character-stream or block :

A character-stream device transfers byte one by one, whereas a block device transfers a block of bytes as
B umit. X

(i} Sequential or random access ;

A sequential device transfers data in a fixed order that is determined by the device, whereas the userofa’
random-access device can instruct the device to seek to any of the available data storage locations.

http://studentsuvidha.in/

www.studentsuvidha.in

(iii) Synchronous or asynchronous :

A synchronous device is one that performs data transfers with predicate response times. An asynchro-
nous device exhibits irregular er unpredictable response times.

(iv) Sharabe or dedicated ;

A sharable device can be used concurrently by several processes or threads; a dedicated device cannot.

(v} Speed of Operation :

Deevice speeds range from a few bytes per second to a few gigabytes per seconds.

{vi) Read-write, réad only or write only :

Some devices perform both input & output, but ather supports only one data direction.

Inputioutiput Interrupts :

CPU
i
1

Device drives inifiates
o

T
1
CPU executing
check for interrupts
biw Mstiymiuns
i

1
L4

Initiates 1o

Input ready, output
complete or ermor
generates interrupt
signal

CPU Receiving interrupt
7 transfers control to
interrupt handler

-1

Interrupt handler
Processes data,

returns from interrupt

*
CPLU Resumes
processing of
mterrupt task

http://studentsuvidha.in/

www.studentsuvidha.in

The basic concept of interrupt mechanism works as follows. The CPU h/w has a wire called the interrupt
request line that the CPLI senses afier executing every instruction. When the CPU detecis that a controller has
asserted a signal on the interrupt request line, the CPU saves a small amount of state, such as the current value
ofthe instruction pointer, and jumps to the interrupt handler routine at a fixed address in memory. The interrupt
handler determines the cause of the interrupt, perform the necessary processing, and executes a retumn from
interrupt instruction to retum the CPU to the execution state prior to the interrupt.

This basic interrupt mechanism enables the CPU to respond to an asynchronous event, such as a device
controller becoming ready for service. In a modern operating systém, we must have interrupt handling features.

Fig., shows the interrupt driven input/output cycle.
Input/Output Buffering :

A buffer is a memory area that stress data while they are transferred between two devices or between a
devices an application. Buffering is done for three reasons. One reason is to copy with a-speed mismatch
between the procedure & consumer of a data stream. Like for printing pages as the printer is much slower than
processor, we can store all pages first & buffer, then print these pages from printer.

A second use of buffering is to adapt between devices that have different data-transfer sizes. Such
disparities are especially common in computer networking, where buffers are used widely for fragmentation
reassembly of messages. At the sending side, a large message is fragmented into small n/w packets. The
paci:maremammmwnmﬂwhuhmsid:pimﬂ!minsmbly buffer to form an image of the
source data. :

A third use of buffering is to support copy buffering semantics, the version of the data written to disk is
guaranteed to be the version of the time of the application system call, independent of any subsequent
changes in the applieation buffer.

Q. 7_48) What are threads? What are the differences between user level threads and kernel Iw:l
mrumum«wnmmmnmumwmm the others?

Ans. A thread sometimes called & light weight process, it is a basic unit of CPU utilization, and consist of
a program counter, a register set, and a stack space. It shares with Peer threads its code section, data section
and opperating system resources such as open files and signals, collectively known as a task. A traditional or
heavy weight process is equal to a task with one thread. A task does nothing if no threads are in it and a thread
must be in exactly one task.

Also, some systems implement user-level threads in user-level libraries, rather than via system calls so
thread switching doesn‘t need to call the operating system, and to cause can interrupt to the kemel. User-level

threads do have disadvantages. For instance, if the kemel is single-threaded, then any user-level thread
exccuting a system call will cause the entire task to wait until the system call returns.

http://studentsuvidha.in/

www.studentsuvidha.in

We can grasp the functionality of threads by comparing muitiple-thread control with muinple process
control,

Threads operate, in many respects, in the same manner as processes. Threads can be in one of the several
states; ready, blocked, running or terminated. Because all threads can access every threads can access every
address in the task, a thread can read or write over any other thread's stacks.

Consider this system is operation. Any one task may have many user-level threads. These user-level
threads may be scheduled and switched among kemel supported lightweight processes without the interven-
tion of the kemnel. No context switch is needed for one user-level thread to block & another to start running, so
user-level threads are extremely efficient. '

These user-level threads are supported by light weight processes. Each LWP is connected to exactly one
kernel-level thread, whereas each user-level thread is independent of the kemel.

The kernel threads are scheduled by the kernel's scheduler and execute on the CPU or CPUs in the system,
If a kernel thread blocks, the processor is free to run another kemel thread. We conclude for the user-level &
kernet level threads that

1. Akemel thread has only a small data structure and a stack. Switching between kernel threads doesn't
require changing memory access information and therefore is relatively fast.

2 An LWP contains a process conirol block with register data, accounting information and memory
information. Switching between LWP's therefore require quite a bit of work and is relatively slow.

3. A user-level thread needs only a stack and a program counter no kernel resources are required. The
kernel is not involved in switching these user-level threads; therefore, switching among them is fact.
These may be thousands of these user level threads, but all the kerne! will ever see is the LWFS in the
process that support these user-level threads.

Q. 7.(b) Differentiate between Interrupt and Trap,

Ans, There are tnany different types of events that may trigger an interrupt for example, the completion of
an input‘output operation, division by zero, invalid memory access and a request for some operating-system
scrvice. For each such interrupt, a service routine is provided that is responsible for dealing with the interrupt,
When the CPU is interrupted, it stops what it is doing & immediately transfers execution to a fixed location. The
fixed location usually contains the starting address where the service routine for the interrupt is located. The
interrupt service routine executes, on completion, the CPU resumes the interrupted computation.

A higher-priority interrupt will be taken even if a lower-priority interrupt is active, but inferrupts at the
same of lower levels are masked or selectively disabled, so that lost or unnecessary interrupts are prevented,

http://studentsuvidha.in/

www.studentsuvidha.in

Modem operating systems are interrupt driven, If there are no processes to execute, no input/output
devices to service and no user to whom to respond, an operating system will sit quietly, waiting for something
to happen. Events are almost always signaled by the occurrence of an interrupt, or a trap. A trap (or an
execution) is a software generated interrupt caused ﬂﬂwrh)'aﬂ error (fore.g., dmsmnb}fmro}, or by a specific
request from a user program that an operating-system service be performed.

When an interrupt (or trap) occurs, the h/w transfers controls to the nim’athg system. First, the operating
system preserves the state of the CPU by storing registers & the program counter, Then, it determines which
type of interrupt has occured.

0. 8. Write short notes on any four of the following :

(i) Swapping

(i) Disk Scheduling

(iii) Multiprogramming v/s Multitasking

(™) Deadlock

) Bankers algorithm.

Ans. (i) Swapping :

A process needs to be in memory to be executed. A process, however can be swapped temporarily out of
memory to a backing store and then brought back into memory for continued execution. For e.g., assume a
multiprogramming environment with a round-robin CPU scheduling algerithm when a quantum expires, the
memory manager will start to swap out the process that just finished, and to swapped in another process to the
memory space that has been freed. When each process finishes its guantum, it will be swapped with another
process.

A variant of this swapping policy is used for priority based scheduling algorithms. If a higi"ler priority
process arrives than the CPU swap the lower priority process with the higher one. Swapping requires a backing

store. The backing store is commonly a fast disk. It must be large enough'to accommodate copies of all memory
images for all users and must provide direct access to the memory images.

(ii) Disk Scheduling :

One of the responsibilities of the O.S. is to use the h/w efficiently. For the disk drives, this means having
a fast access time & disk bandwidth. The access time has two major components. The seek time is the time for
the disk arm to move the heads to the cylinder containing the desired sector. The rotational latency is the
additional time waiting for the disk to rotate the desired sector to the disk head. The disk to rotate the desired

http://studentsuvidha.in/

www.studentsuvidha.in

sector to the disk head. The disk bandwidth is the total number of bytes transferred. divided by the total time
between the first request for service & the completion of the last transfer. We can improve both the access time
& the bandwidth by scheduling the servicing of disk input/output requests in a good order.

The various algorithm for disk scheduling are :

1. FCFS scheduling (First Come First Save)

2. SSTF Scheduling (Shortes-Seek Time First)

3. SCAN scheduling

4. C-SCAN scheduling

3. Look scheduling.

(iii) Multiprogramming v/s Multitasking :

Multiprogramming operating systermn allows two or more users to run programs at the same time. The
objective of a multiprogramming operating system ig to increase the system utilization efficiency. Some of the
most popular multiprogramming operating system are : :

* UNIX, VMS, Window NT etc.

Multitasking allows more than one program 1o run concurrently. The ability to execute more than one task
at the same time, a task being a program. The terms multitasking & multiprocessing are often user interchange-
ahbly.

In multitasking only one CPU is involved, but it switches from one program to another so quickly that it
gives the appearance of executing all the programs at the same time. Time sharing is done between different
programs executing concurrently.

(iv) Deadlock :

In a muitiprogramming environment, several processes may complete for a finite number of resources. A
process request resources; if the resources are not available at that time, the process enters a wait state. It may
happen that waiting processes will never again change state, because the resources they have requested are
held by other waiting processes. This situation is called a deadlock. A deadlock situation can arise if the
following four conditions hold simultaneously in a system.

http://studentsuvidha.in/

www.studentsuvidha.in

1. Mutual exclusion : &F least one resource must be held to a non-sharable mode,

2. Hold & wait : There exist a process that is holding one resource & waiting to acquire another.

3 anrécmptim : Resources cannot be preempted.

4. Circular wait : "There must existaset {Pg, P......P, | such that Py is waiting for resource held by P,
Py is waiting for P; & P on P, is waiting for a resource held by Py, thus forms a deadlock cycle.

(v} Bankers algorithm :

Fhe bankers algorithm is used for deadlock avoidance when a new process enters the system, if must
declare the maximum number of instances of each resource type that it may need. This number may not exceed
the total number of resources in the system. When a user requests a set of resources, the system must
determire whether the allocation of these resources will leave the system in safe state. 1Tt is the resources are
allocated, otherwise, the process must wait until some other process releases enough resources.

We need the following data structures ;
* Available : A vector of length m indicates the number of available resources of each type. [favailable [j}

= k, these are k instances of resource type P; available.

* Max : Ann = m malrix defines the maximum demand of each process. Ifmax [i, j] =k, then P; may request

at most k instances of R .

* Allocation : Ann * m matrix defines the number or resources of each type currently allocated to each
process.

* Need : An n *xm matrix indicates the remaining resources, need of each process,

Using the data structures we will find whether the following state is safe or not and for making a new
request what resources must be allocated first P, a new safe state.

http://studentsuvidha.in/

