www.studentsuvidha.in

B.E.
Fifth Semester Examination, Dec-2008

PRINCIPLESOF OPERATING SYSTEM

Mote : Attempt any five questions.

. 1. (a) What are the advantages of multiprogramming system? Describe the difference between
multiprogramming and multitasking.

Ans. Advantages of Multiprogramming :

Multiprogramming is the rapid switching of the CPU between multiple processes in memory. It is done
only when the currently running process requests L/'O, or terminates. It was commonly used to keep the CPU
busy while one or more processes are doing 1/0. It is now mostly superseded by multitasking, in which
reoec o -g also lose the CPU when their time quantum expires. Multiprogramming makes efficient use of the
CPu vy overlapping the demands for the CPU and its IO devices from various users. It attempts to increase
CPU utilization, by always having something for the CPU to execute.

The prime reason for multiprogramming is to give the CPU something to do while waiting for 1/0 to
complete. If there is no ~MA, the CPU is fully occupied doing 1/0, so there is nothing 1o be gained (at least in
terms of CPU utilization) by multiprogramming. No matter how much 110 a program does, the CPU will be 100%
busy This of course assumes the major delay is the wait while data is copied. A CPU could do other work if the
1/0 were slow for other reasons (arriving on a serial line, for instance).

1/0 operations are exceedingly slow (compared to instruction execution)

A prugram containing even a very small number of 1/O ops, will spend most of its time waiting for them
Hence: podr CPU usage when only one program is present in memory.

Multitasking : ! /

Muliitasking is a method by which multiple tasks, also known as processes, share common processing
resources such as a CPU. In the case of a computer with a single CPU, only one task is said to be running at any
point in time, meaning :hat the CPU is acively executing instructions for that task. Multitasking solves the
problem by scheduling which task may be the one running at any given tirne, and when another waiting task
gets a trn. The act of reassigning a CPU from one task to another one is called a context switch. When context

_switches occur frequently enough the illusion of parallelism is achieved. Even on computers with more than
one CPU (called multiprocessor machines), multitasking allows manry more tasks to be run than there are CPUs.
Operzting systems may adopt one of many different scoeduling strategies, which general’ * fall into the
following calegories :

- In multiprogramming systems, the running task keeps running until it performs an operation that
requires waiting for an external event (e.g. reading from a tape) or until the computer's scheduler forcibly swaps
the running task out of the CPU. Multiprogramming systems are designed to maximize CPLJ usage.

- In time-sharing systems, the running task is required to relinquish the CPU, either voluntarily or by an
external event such as a hardware interrupt. Time sharing systems are designed to allow several programs to

http://studentsuvidha.in/

www.studentsuvidha.in

execull: apparently simultaneously.

In real-time systems, some waiting tasks are guaranteed to be given the CPU when an external event
occurs. Real time systems are designed to control mechanical devices such as industrial robots, which

require timely processing.

*dvumgu:

crultipmgmmming makes efficient use of the CPU by overlapping the demands for the CPU and its /0.
devieds from vaTinus users, |t attempts to increase CPU utilization by always having something for the CPU to
& : ;

Q. 1.(b) Iﬁscum the following types of Operating system structures :
@ Morplitllic systems
(if) Layéred systems

iii) Virtal machine
Clktt-servtr model.

)
]&m.

0] Monolithic Systems :

Uasar hodes
lyl-—nﬂqwl-;.
T

eyl Ricce

i

- Application programs that invokes the requested system services.
- A set of system services that carry out the operating system procedures/calls,
- A set of utility procedures that help the system services.

http://studentsuvidha.in/

www.studentsuvidha.in

MS-DOS - written to provide the most functionality in the least space : -
- not divided into modules (monolithic).

- Although MS-DOS has some structure, its interfaces and levels of functionality are not well sepa-
rated.

(id) Layered approach :
The operating system is divided into a number of layers (levels), each built on top of lower layers.

The bottom layer {layer 0) is the hardware; the highest (layer N} is the user interface. With modularity,
layers are selected such that each uses functions (operations) and services of only lower-level layers.

(iii) Virtual Machine :

A Virtual Machine (VM) takes the layered and microkernel approach to its logical conclusion.
It treats hardware and the operating system kernel as though they were all hardware.
A virual machine provides an interface identical to the underlying bare hardware.

= The operating system host creates the illusion that a process has its own processor and (virtual
memaory).

- Each guest provided with a (virtual) copy of underlying cump;m:r

- The resources of the physical computer are shared to create the virtual machines:

- CPU scheduling can create the appearance that users have their own processor,

. - Spooling and a file system can provide virtual card readers and virtual line printers.

- A normal user time-sharing terminal serves as the virtual machine operator's console.

http://studentsuvidha.in/

www.studentsuvidha.in

(iy) Client Server Model :

'|":h= advent of new concepis in operating system design, microkernel, is aimed at migrating traditional
services of an operating systam out of the monolithic kernel into the user-level process. The idea is to divide
the ing system into several processes, each of which implements a single set of services. For example, 1/
O zervers, MEMoTy server, process scerver, threads interface system. Each server runs in user mode, provides
services to the reguestad client. The client, which can be either :nother operating system component or
application program, requests a service by sending a message to the server. An O5 kemél {or microkernel)
running in kernel mode delivers the message to the appropriate server; the server performs the operation and
microkermel delivers the result to the client in another message, as shown in figure.

| limn PREACE Thoewds File {11
| A licad doens Inferface Borwor 5::.-';.?'
r
LImarr Pl oncde

HKeimel MMods

PSP S

W smresminn Microkernol =

Hardware

] : Send —————f

g

Reply — e o
il

d‘. Z. {a) Consider the following processes with arrival time and execation time as indicated :

Process Arrival Time - Burst Time-
Pl 0.0 ' 10
| 4 3.0 2
r3 4.0 1
P4 ’ 5.0 . 4
-:t-lnrht: Average Waiting Time and Average Turn arcund Time using :

1*. FCFS
I'T) SJF preemptive
tiii) Round Robin (Time quantum =1}

http://studentsuvidha.in/

www.studentsuvidha.in

Ans.
Process Arrival Timg " Burst Time
Pl 00 10
" 30 2
P 40 N \ [
P 50 4
FCFS:

0 10 12 13 17
The waiting time for P; =0
P, =10, Py =Ii2, Py=13
-, Total average time

0+10+12+13 _ 35
4 4

5JF:

F3 P; Py Fl

0 [3 7 17
The Total average time for these tasks will be.
(iii) Round Robin : Time quantum = |

Bl BRI IR K|R] Ps | Py | Py | B

0 I 2 3 4 5 [7 3 9 10
The total average time will be,

0+4+247+11 24 _ .
4 4 "

http://studentsuvidha.in/

oL

www.studentsuvidha.in

(1. 2. (b) What is process? Deseribe seven state modes for process.

Ans. Process:

A program in execution; process execution must progress in sequential fashion.

A process includes ;

- Program counter.
- Stack
- Data section.

Seven state model of & process ;

Q, 3. (a) Discuss the similarities and differences between paging and segmentation, What are advan-
tages of combining paging with segmentations?
Ans, Paging : Paging (non-contiguous allocation) :

Physical address space of a process can be non-contiguous; process is allocated physical memory
whenever the latter is available.

Divide physical memory into fixed-sized blocks called frames (typically between 512 bytes and 8192
bytes).

Divide logical memory into blocks of same size called pages.
To run a program of size n pages, need to find n free frames and load program.
Internal fragmentation.

Address translation Scheme :

A llogical address is divided into :

Page number (p)-used as an index into a page table which contains base address of each page in
physical memory.

http://studentsuvidha.in/

www.studentsuvidha.in

Page offset (d)-combined with base address to define the physical memory address that is sent to the
memory.

L] =]
iy

Segmentation :

One-dimensional address space with growing pieces.

At compile time, one table may bump into another.
Segmentation .
Generate segmented logical address at compile time.

Segmented logical address is translated into physical address at execution time q by software or
hardware?

http://studentsuvidha.in/

www.studentsuvidha.in

Paging vs. Segmentation :

Congideration Paging Segmentation

Meed the programmer be aware No No

that this technique is being used?

How many total address space | Many

spaces are there?

Can producers and data be No Yes

distinguished and separately

protected?

Can tables whose size fluctuates No Yes

be accommodated easily?

Is sharing of procedures No Yes

between users facilitated? :

Why was this technique To get a large To allow programs

invented? linear address and data to be broken
space without up into logically
having to buy independent addre-ss
more physical spaces and to aid
memory sharing and protection

Q. 3. (b) Consider the following page reference string :
1,2,34,1,4,5,6,2,1,3,2,7, E,J,I,I.Z,ﬁ
How many page faults would occur for the following replacement :l;nrﬂlmu assuming six frames? All

\!(imﬂ are initially empty :

(i LRU

(i) v AIFD

(iii) Optimal

Ans. The ;age reference string is

1,2,3N4,5.6.2,1,3,2,7.6,3,4, 1,2, 6 using 6 frames.

(JLRU:

[1,2,3,1.4, 5.3;2{ 1,3,2,7,6,3.4,1,2,6

http://studentsuvidha.in/

www.studentsuvidha.in

The total number of page faults willbe 7.

1 1 i | | [7 7 7
2 2 2 2 2 2 1 |
3 3 3 3 ¥ . 3 2
4 4 4 4 4 4
3 5 5 5 5
6 6 6 6
I 2 3 4 5 6 7 8 9
~ The total number of page faults will be 7.
(i) FIFO:
| | i 1 1 1 |
2 2 2 2 2
3 3 3 3
4 4 4 4
5 5 S
6 6
1 2 3 4 5 6 7
The total number of page faults will be 9.
(i) Optimal Algo :
1.2,3,1,4,5,6,2,1,2,3,7,6,3,4,1,2,6
I I l | 1 l |
2 2 2 2 2 2
3 3 3 3
4 4 4 4
5 5 5
6 6
1 2 3 4 5 6 7

http://studentsuvidha.in/

www.studentsuvidha.in

0Q.4. {5} Discuss various file allocation and access methods. Compare their advantages and disadvan- -
tages. .
Ans. Various file allocation methods :

One main problem in file management is how to allocate space for files so that disk space is utilized
effectively and files can be accessed quickly. Three major methods of allocating disk space are contiguous,
linked, and indexed. Each method has its advantages and disadvantages. Accordingly, some systems support
all three (e.g. Data General's RDOS). More commonly, a system will use one particular method for all files.

Contiguous Allocation :

The contiguous allocation method requires each file to occupy a set of contiguous address on the disk.
IDisk addresses define a linear ordering on the disk. Notice that, with this ordering, accessing block b+1 after
block b normally requires no head movement. When head movement is needed (from the last sector of one
cylinder 1o the first sector of the next cylinder), it is only one track. Thus, the number of disk seeks required for
accessing contiguous allocated files in minimal, as is seek time when a seek is finally needed. Contiguous
allocation of a file is defined by the disk address and the length of the first block If the file is n blocks long, and
starts at location b, then it occupies blocks b, b+1, b+2, ..., b¥n-1. The directory entry for each file indicates the
address of the starting block and the length of the area allocated for this file.

The difficulty with contiguous allocation is finding space for a new file. Ifthe file to be created is n blocks
long, then the OS must search for n free contiguous blocks. First-fit, best-fit, and worst-fit strategies (as
discussed in Chapter 4 on multiple partition allocation) are the most common strategies used to select a free
hole from the set of available holes. Simulations have shown that both first-fit and best-fit are better than worst-
fit in terms of both time storage utiliza: » Neither first-fit nor best-fit is clearly best in terms of storage
utilization, but first-fit is generally faster.

These algorithms also suffer from external fragmentation. As files are allocated and deleted, the free disk
space is broken into little pieces. External fragmentation exists when enough total disk space exists to satisfy a
request. but this space not contiguous; storage is fragmented into a large number of small holes.

Another problem with contiguous allocation is determining how much disk space is needed for a file.
When the file is created, the total amount of space it will need must be known and allocated, How does the
creator (program or person) know the size of the file to be created. In some cases, this determination may be
fairly simple (e.g. copying an existing file), but in general the size of an output file may be difficult to estimate.

Limked Allocation :

The problems in contiguous allocation can be traced directly to the requirement that the spaces be
allocated contiguously and that the files that need these spaces are of different sizes. These requirements can
be avoided by using linked allocation.

In linked allocation, each file is a linked list of disk blocks. The directory contains a pointer to the first and
(optionally the last) block of the file. For example, a file of 5 blocks which starts at block 4, might continue at
block 7,then block 16, block 10, and finally block 27, Each block contains a pointer to the next block and the last
block contains a NIL pointer. The value -1 may be used for NIL to differentiate it from block 0,

With linked allocation, each directory entry has a pointer to the first disk block of the file. This pointer is
initialized to nil (the end-of-list pointer value) to signify an empty file. A write to a file removes the first free

http://studentsuvidha.in/

www.studentsuvidha.in

block and writes to that block. This new block is then linked to the end of the file. To read a file, the pointers are
just followed from block to block. :

There is no external fragmentation with linked allocation. Any free block can be used to satisfy a request.
Naotice also that there is no need to declare the size of a file when that file is created. A file can continue to grow
as long as there are free blocks. Linked allocation, does have disadvantages, however. The major problem is
that it is inefficient to support direct-access; it is effective anly for sequential-access files. To find the ith block
of a file, it must start at the beginning of that file and follow the pointers until the ith block is reached. Note that
each access 10 a pointer requires a disk read.

Another severe problem is reliability. A bug in OS or disk hardware failure might result in pointers being
lost and damaged. The effect of which could be picking up a wrong pointer and linking it to a free block or into
another file.

Indexed Allocation :

The indexed allocation method is the solution to the problem of both contiguous and linked allocation,
This is done by bringing all the pointers together into one location called the index block. Of course, the index
block will oceupy some space and thus could be considered as an overhead of the method in indexed alloca-
tion, <h file has its own index block, which is an array of disk sector of addresses. The ith entry in the index
block | ‘nts to the ith sector of the file. The directory contains the address of the index block of a file. To read
the ith sector of the file, the pointer in the ith index block entry is read to find the desired sector. Indexed
allocation supports direct access, without suffering from external fragmentation. Any free block anywhere on
. the disk may satisfy a request for more space.

File access methods :

There are several ways that the information in the file can be accessed. Some systems provide only one
access method for files. On other systems, many different access methods are supported, and choosing the
right one for a particular application is a major design problem.

Sequential Access :

Information in the file is processed in order, one record after the other. This is by far the most common
mode of access of files. For example, computer editors usually access files in this fashion. A read operation
reads the next portion of the file and automatically advances the file pointer. Similarly, a write appends to the
end of the file and the file pointer. Similarly, a write appends to the end of the file and the file pointer. Similarly,
a write appends to the end of the end of the file and advances to the end of the newly written material (the new
end of file). Such a file can be reset to the béginning, and, on some systems, a program may be able to skip
forward or backward n récords, for some integer n. This scheme is known as sequential access to a file.
Sequential access is based on a tape model of a file.

Direct Access :

Direct access is based on a disk model of a file. For direct access, the file is viewed as a numbered
sequence of block or records, A direct-access file allows arbitrary blocks to be read or written. Thus, after block
18 has been read, block 57 could be next, and then block 3. There are no restrictions on the order of reading and
writing for a direct access file. Direct access files are of great use for intermediate access to large amounts of
information.

http://studentsuvidha.in/

www.studentsuvidha.in

The file operations must be modified (o include the block number as a parameter. Thus, we have "read n”,
where n is the block number, rather than "read next”, and "write n", ratherthat "write next". An altemnative
approach is to retain "read next" and "write next” and to add an operation; "position file to n" where n is the
block nurber. Then, to effect a "read n", we would issue the commands "position to n” and then "read next”,

Not all OS support both sequential and direct access for files. Some systems allow only sequential file
access, others allow only direct access. Some systems require that a file be defined as sequential or direct when
it is creatad; such a file can be accessed only in a manner consistent with its declaration.

(. 4.{b) Give advantages of Distributed system over Centralized system.
Ans. Advantages of distributed system over centralized system :

- Economics : a coHection of microprocessors offer a better price/performance than mainframes. Luw-
price/performance ratio: cost effective way to increase computing power.

- Speed : a distributed system may have more total compuling power than a mainframe. Ex. 10,000 CPU
chips, each running at 50 MIPS, Not possible to build 500,000 MIPS single processor since it would require
0.002 nse¢ instruction cycle. Enhanced performance through load distributing,

- Inherent distribution : Some applications are inherently distributed. Ex. a supermarket chain,

Reliability ; If one machine crashes, the system as a whole can still survive. Higher availability and
improved reliability. -

Incremental growth : Computing power can be added in small increments. Modular expendability

Another deriving force : The existence of large number of personal computers, the need for people to
collaborate and share information.

Q. 5. (a) Discuss the following :
{iy Critical section problem
(i) Race condition
{iify Priority inversion problem
™) Monitors
Ans. (i) Critical section problem : Critical Section
- Set of instructions that must be controlled so as to allow exclusive access to one process
- Execution of the critical section by processes is mutually exclusive in time.
- Critical Section (S & G, p. 166) (for example, "for the process table")
repeat :

critical section

,

http://studentsuvidha.in/

www.studentsuvidha.in

remainder section

until FALSE
Solution to the Critical Section Problem must meet three conditions.
1. Mutual Exclusion :

If process p; is executing in its critical section, no other process is executing in its critical section
2. Progress :

If no process is executing in its critical section and there exists some processes that wish to enter their
critical sections, then only those processes that are not executing in their remaindér section can participate in
the decision of which will enter its critical section next and this decision cannot be postponed indefinitely.

- If no prucess is in critical section, can decide quickly who enters,
- Only one process can enter the critical section 50 in practice, others are put unllhtqueue
3. Bounded Waiting :

There must exist a bound on the number of times that pther processes are allowed to enter their critical
sections after a process has made a request to enter its critical section and before that request is granted.

- The wait is the time from when a process makes a request to enter its critical section until that request
is granted.

- In practice, once a process enters its critical section, it does not get another tumn until 8 waiting
process gets a tum (managed as a queue).

(i) Race Condition : Conditions for race conditions to happen
Concurrent processes/tasks access shared variables.

- Preemption/interruption at a "wrong" time. :
Atomic section : section of code that cannot be interrupted by another process.

- Critical section : section of code that must not be concurrently accessed by more than one thread of
execution.

- POSIX:

preemptive scheduling (| race among processes.

TinyOS.

Non-prec:nptive scheduling for tasks (1 no race among tasks.
Solution to Race Condition : -
- Race-Free Invariant

- Any update to shared state is either not a petential race condition (SC only), ul"mn:mxwidlinm
atomic section.

http://studentsuvidha.in/

www.studentsuvidha.in

- Compiler identifies all shared states and return errors if the above invariant is violated.

- How to {ix race condition?

- Make the access to all shared states with potential race conditions atomic.

- Move access to SC.

Atomic Sections :

atomic { <Statement list> }

- Impletnents critical region

- Disable interrupt when atomic code is being executed.

- But cannot disable interrupt for long! [restrictions.

- Noloops. |

- No commands/events.

- Calls OK, but called must meet restrictions too.

(iii) Priority Inversion Problem ;

In scheduling, priority inversion is the scenario where a low priority task holds a shared resource that is
required by a high priority task. This causes the execution of the high priority task to be blocked until the low
priority task has released the resource, effectively "inverting” the relative priorities of the two tasks. If some
other medium priority task, one that does not depend on the shared resource, attempts to run in the interim, it
will take precedence over both the low priority task and the high priority task. In some cases, priority inversion
can oceur without causing immediate harm-the delayed execution of the high priority task goes unnoticed, and

sventually the low priority task releases the shared resource. However, there are also many situations in which
priority inversion can cause serious problems.

{iv) Monitors ;

A monitor is an approach to synchronize two or more computer tasks that use a shared resource, usually
a hardware device or a set of variables. With monitor-based concurrency, the compiler or interpreter transpar-
ently inserts locking and unlocking code to appropriately designated procedures, instead of the pmgrammnr
having to access concurrency primitives explicitly. A monitor consists of ;

- Set of procedures that allow interaction with the shared resource.

- A mutual exclusion lock.

= The variables associated with the resource.

- A monitor invariant that defines the assumptions needed to avoid race conditions

A monitor procedure takes the lock before doing anything else, and holds it until it either finishes or waits
for a condition (explained below). If every procedure guarantees that the invariant is true before it releases the
lock, then no task can ever find the resource in a state that might lead to a race condition.

http://studentsuvidha.in/

www.studentsuvidha.in

Q.5.(b) What is binary semaphore? Implement wait () and slghll () without busy wait for binary
semaphores. With the help of binary semaphore implement the cosnting semaphore.

Ans. Binary Semaphore :
Binary semaphore is sufficient for mutex
Binary semaphore has boolean value (not integer)
bsem_wait() : Waits until value is 1, then sets to 0
bsem_signal(): Sets value to 1, waking one waiting pll‘uci:ss
General semaphore is also called counting semaphore
Binary semaphore signal/wait routines
Signal (s)
S=g+1;
Wait(s)
Try_again : if(s=0) then (ifsis 1)
5=0
Else
Go to try_again;

“ busy-waiting in the wait() procedure is undesirable in time- sharing systems- busy waiting
process ties up the processor, but does not execute any useful instruction

- say pmoms.l[} has to perform signal(s) to allow waiting process P to run - more efficient allow Q
to run

- wait (s)
try_again : if (test-and -set (addr(s))==0) then
{ yield();
Goto try_again; }
Indiscriminate use of semaphores can lead the system to be stuck in a state from which it never emerges.
- Directed cycle in interprocess dependencies
¢« = Process P waiting for Q which is waiting for P.

h-iﬂ- semephore B
wealting on A

" hold
werad tl

http://studentsuvidha.in/

www.studentsuvidha.in

We want to implement counting sempahores using binary semaphores as the only synchronization
construct, that is, without accessing pcbs, disabling interrupts, etc. We also do not want an implementation
that uses busy waiting,

Consider an implementation of a counting semaphore S, Clearly the implementation needs to keep track of
the value of S, say in an integer variable S.vaL. Furthermore, if a process is supposed to wait on S, then the
implementation has to make the process wait. Because binary semaphores are the only synchronization con-
struct allowed in the implementation, the only way that the implementation can make the process wait isto have
it wait on a binary semaphore, say S.wait (recall that busy waiting is not acceptable).

These considerations lead us to the follo ving first cut at an implementation :

Counting Semaphonre construct Implementation using Binary Semaphores
Sernaphore S initially K record S {integer val initially K,
BinarySemaphore wait initially 0}

H5) P(5) { ifS.val =0

then {P (5. wait)}

else {S.val : = S.val—1})

W(S) V(8) { if "processes are waiting on 5.wait"
: then {V (S.wait)}

else , .val:=5Swval+1}

Q. 6. Explain /O Device organization. Describe VO Interrupts and VO Buffering,

Ans. restion 6 1/0 Interrupt :

The temporary stopping of the current program routine, in order to ;:xucutc some higher priority V'O
subroutine, is called an interrupt. The interrupt mechanism in the CPU forces a br ch out of the current
program routine to one of several suhmqlincs, depending upon which level of interrupt occurs.

1/0 operations are started as a result of the execution of a program instruction. Once started, the /0
device continues its operation at the same time that the job program is being executed. Eventually the I/O
operation reaches a point at which a program routine that is related to the /O operation must be executed. At

that point an interrupt is requested by the /O device involved. The interrupt action results in a forced branch
to the required subroutine.

In addition to the routine needed to start an 1/Q operation, subroutines are required to :
I. Transfer a data word between an 1/0 device and main storage (for write or read operations).

2. Handle unusual (or check) conditions related to the /O device..

http://studentsuvidha.in/

www.studentsuvidha.in

3. Handle the ending of the /O device operation. .
Shown in the following diagram are :

1. The job program routine (which, for this discussion, includes those program steps not used for 1/O
operation handling).

2. The /O program routine that starts an /O device.

3. The I/O device operation (such as moving a punched card through the read feed of a card reader).

Branching from the job routine to the /O routine occurs at point A in the diagram. This branch is a
program controlled operation that is started because the job program is at a point at which the /0 operation is
required (such as the reading of a card in the card reader). Similarly, when the erwd of the /O routine is reached,

a program-controlled branch is made back to the job routine (point B). (Program-controlled means that the
logical point at which the branch occurs is determined by the program; no forcing is performed by the CPU.)

1’0 Buffering :
1/O accesses are reads or writes (e.g., to files)
Application access is arbitrary (offset, len)
Convert accesses to read/write of fixed-size blocks or pages

Blocks have an (object, logical block) identity

http://studentsuvidha.in/

www.studentsuvidha.in

Blocks/pages are cached in memory
- Spatial arlld temporal locality.
- th»"rcphnﬁn;nt issues just as VM paging
- Trade oft ufhlufl:lr. size.

A driver that services aninteractive or slow device, or one that usually transfers relatively small amounts
of data at a time, should use the buffered I/O transfer method. Using buffered /O for small, interactive transfers
improves overall physical memory usage, because the memory manager doesn't need fo lock down a full
physical page for each transfer, as it does for drivers that request direct 1/O.-Generally, video, keyboard, mouse,
serial. and parallel drivers request buffered /0.

Q. 7. (=) Whai are threads? What are the difference between user level threads and kernel bevel
threads? Under what circumstances is one type better than the others?

Ans. Thread :

A thread of execution is a fork of a computer program into two or more concurrently running tasks. The
implementation of threbds and processes differs from one operating system to another, but in general, a thread
is contained inside a process and different threads in the same process share some resources (most commonly
memory), while different processes do not. On a single processor, multithreading generally occurs by time-
division multiplexing (as in multitasking): the processor switches between different threads. This context
switching generally happens frequently enough that the user perceives the threads or tasks to be running at
the same time. On nmuhmmmrurmuhl-mmsymﬂwmmdsmmksacmu!lydanm at the same time,
with each processor or core running a particular thread or task.

UHP-IE'\"II.‘I,'W Kernel Level Threads :

There are two distinct models of thread controls, and they are user-level threads and kemel-level threads.
The thread function library 1o implement user-level threads usually runs on top of the system in user mode.
* Thus, these threads within a process are invisible to the operating system. User-level threads have extremely
low overhead, and can achieve high performance in computation. However, using the blocking system calls like
read(), the entire process would block. Also, the scheduling control by the thread runtime system may cause
some threads to gain exclusive access to the CPU and prevent other threads from obtaining the CPU. Finally,

access to multiple processors is not guaranteed since the operating system is not aware.of existence of these
types of threads.

http://studentsuvidha.in/

www.studentsuvidha.in

O the other hand, kemel-leve] threads will guarantee multiple processor access but the computing
performance is lower than user-level threads due to load on the system. The synchronization and sharing
resources among threads are still less expensive than multiple-process model, but more expensive than user-
level threads. The thread function library available today is often implemented as a hybrid model, as having
advantages from both user-level and kernel-level threads. The design consideration of thread packages today
consists of how to minimize the system overhead while providing access-to the multiple processors

). 7. (b) Differentiate between Interrupt and Trap.
Ans. Interrupi :

An interrupt is an asynchronous signal from hardware indicating the need for atiention or a synchronous
event in software indicating the need for a change in execution. A hardware interrupt causes the processor to
save its state of execution via a context switch, and begin execution of an interrupt handler. Software interrupts
are usually implemented as instructions in the instruction set, which cause a context switch to an interrupt
handler similar to a hardware interrupt. Interrupts are a commonly used technique for computer multitasking,
especially in real-time computing. Such a system is said to be interrupt-driven.

Trap:

A trap is a from of exception and therefore can usually be recovered from.
Q. 8. Write short notes on any four of the following :

® Swapping

(i) Disk Scheduling

(iii) Symmetric v/s Asymmetric Multiprocessing

(iv) Deadlock

® Bankersslgorithm.

Ans. (i) Swapping :.

When the physical membry in the system runs out and a process needs to bring a page into memory then
the operating system must decide what to do. It must fairly share the physical pages in the system between the
processes running in the system, therefore it may need to remove one or more pages from the system to make
room for the new page to be brought into memory. How virtual pages are selected for removal from physical
memory affects the efficiency of the system. Linux uses a page aging technique to fairly choose pages which
might be removed from the system. This scheme involves every page in the system having an age which

http://studentsuvidha.in/

www.studentsuvidha.in

changes as the page is accessed. The more that a page is accessed, the younger it is; the less that it is accessed
the older it becomes. Old pages are good candidates for swapping, If the page to be removed came from an
image or data file and has not been written to then the page does not need to be saved. Instead it can be
discarded and if the process needs that page again it can be brought back into memory from the image or data
file again. However, if the page has been written to then the operating system must preserve the contents of
that page so that it can be accessed at a later time.

(i) Disk scheduling :

In multiprogramming systems several different processes may want to use the system's resources simul-
taneously. For example, processes will contend to access an auxiliary storage device such as a disk. The disk
drive needs some mechanism to resolve this contention, sharing the resource between the processes fairly and
efficiently. In order to satisfy an /O request the disk controller must first move the head to the correct track and
sector. Moving the head between cylinders takes a relatively long time so in order to maximise the number of I/
O reguests which can be satisfied the scheduling policy should try to minimise the movement of the head, On
the other hand, minimising head movement by always satisfying the request of the closest location may mean
that some requests have to wait a long time. Thus, there is a trade-off between throughput (the average number
of requests satisfied in unit time) and response time (the average time between a request arriving and it being
satisfied). Various different disk scheduling policies are used: First Come First Served (FCFS),

Shortest Seek Time First (S85TF), SCAN, Circular SCAN (C-SCAN), LOOK, Circular LOOK
(C-LOOK). . :

(iiif) Symmetric vs Asymmetric multiprocessing: Asymmetric multiprocessing.

In asymmetric multiprocessing the program tasks (or threads) are strictly divided by type between pro-
cessors and typically, each processor has its own memory address space. These features make asymmetric

multiprocessing difficult to implement. The two figures below are two examples of asymmetri¢ multiprocessor
configurations. The PS/2 Server 195 and Server 295 were examples of servers using asymmetric multiprocess-

ing.
Asymmetric multiprocessing Example 1 :

Private
Memary

Comimon Memory . l#.'l

http://studentsuvidha.in/

www.studentsuvidha.in

This configuration has multiple memory units with some of those not shared by all processors.

Asymmetric maltiprocessing Example 2 :

This configuration has one processor doing all 1'O.

Symmetric multiprocessing :
Symmetric multiprocessing (SMP) is the musl common configuration of multiple processors. A typical
SMP configuration has the following items: It has multiple processors and exactly one of everything else:
memory, /O subsystem, operating system, etc. The processars are symmetric, that is, they can do anything the
- others can. Each can look at or alter any element of memory, and each can do any kind of I/O. It is symmetrical
because the view from any processor of the rest of the system is exactly the same. The display below shows a
typical implementation of SMP,

A Typical SMP configuration :

A Typical SMP Configuration

LAN

http://studentsuvidha.in/

www.studentsuvidha.in

SMP is easier to implement in operating systems and is the method used most often in operating systems
that support multiple processors. Operating systems that support SMP include :

0872 Warp Server 4.0

052 for SMP 2.11

Windows NT 4.0

Novel NetWare 4.1 SMP

MNovell Unix'Ware SMP 2.0

SCO Open Server 5.0 with seo MPX 3.0
Banyan Vines

(iv) Deadlock :

A deadlock is a situation ih which two computer programs sharing the same resource are effectively
preventing each other from accessing the resource, resulting in both programs ceasing to function. The earliest
computer operating systems ran only one program at a time. All of the resources of the system were available
to this one program. Later, operating systems ran multiple programs at once, interleaving them. Programs were
required to specify im advance what resources they needed so that they could avoid conflicts with other
programs running at the same time. Eventually some operating systems offered dynamic allocation of re-

sources. Programs could request further allocations of resources after they had begun running. This led to the
problem of the deadlock. Here is the simplest example : '

Program | requests resource A and receives it.
Program 2 mquemmuwceﬂwmiv;u'ih
Program | mqmtsmmﬂandisqmn'edup,pmdmﬂmmmufﬂ,
Program 2 requests resource A and is queved up, pending the release of A,

Now neither program can proceed until the other program releases a resource. The operating system
cannot know what action 1o take. At this point the only alterative is to abort (stop) one of the programs. '

(v) Bankers Algorithm : Processes request | resource at a time.

http://studentsuvidha.in/

www.studentsuvidha.in

Request granted ONLY if it results in a safe state.

If request results in an unsafe state, it is denied and user holds resources and waits until request is
eventually satisfied. ' '

- In finite time, all requests will be satisfied.
- Can be extended to cater for multiple resource types.
+ : Mo deadlock and not as restrictive as deadlock prevention
- : Fixed number of resources and users
Guarantees finite time-NOT-reasonable response time.
- Needs advanced knowledge of maximum needs.
Not suitable for multi-access systems. .
Unnecessary delays in avoiding unsafe states which may not lead to deadlock.

Deadlock

UNSAFE

SAFE

Figure 2 : Bankers algorithm (safe/unsafe states)
Thercfore, from Bankers algorithm :
Allow a thread (process) to proceed if :
(Total available resources)-{number allocated))
> (maximum remaining that migh{ be needed by the thread (process)).

http://studentsuvidha.in/

