\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- I ${ }^{\text {th }}$ SEMESTER-EXAMINATION - MAY/JUNE- 2012

Subject code: 141903
Date: 23/05/2012
Subject Name: Engineering Thermodynamics
Time: 10:30 am - 01:00 pm
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Use of properties tables is permitted.
Q. 1 (a) Define Thermodynamic system. Also explain different thermodynamic systems 07
with appropriate examples.
(b) Explain concept of Quasi-static process with necessary figure.
(c) Differentiate between Intensive and Extensive properties of system.
Q. 2 (a) Prove that 'Energy' is a point function of a system undergoing change of state.
(b) An air compressor compresses atmospheric air at 0.1 MPa and $27^{\circ} \mathrm{C}$ by $10 \quad \mathbf{0 7}$ times of inlet pressure. During compression the heat loss to surrounding is estimated to be 5% of compression work. Air enters in compressor with velocity of $40 \mathrm{~m} / \mathrm{s}$ and leaves with $100 \mathrm{~m} / \mathrm{s}$. Inlet and exit cross-section areas are $100 \mathrm{~cm}^{2}$ and $20 \mathrm{~cm}^{2}$ respectively. Estimate the temperature of air at exit from compressor and power input to compressor.

OR

(b) Prove the equivatency of Kelvin-Plank and Clausius statements.
Q. 3 (a) Explain fordisius inequality for reversible and irreversible cyclic processes. 07
(b) Air ar $\mathrm{D}^{\circ} \mathrm{C}$ and 1.05 bar occupies $0.025 \mathrm{~m}^{3}$. The air is heated at constant 07 v g'me until the pressure is 4.5 bar , and then cooled at constant pressure back to original temperature. Calculate (i) The net heat flow from the air. (ii) The net entropy change. Also draw the processes on T-s diagram.

OR
Q. 3 (a) Define "Availability". Also derive expression for availability in a non-flow 07
(b) 5 kg of air at 550 K and 4 bar is enclosed in a closed system. (i) Determine the availability of the system if the surrounding pressure and temperature are 1 bar and 290 K respectively. (ii) If the air is cooled at constant pressure to the atmospheric temperature, determine the availability and effectiveness.
Q. 4 (a) Write brief note on the followings:
(i) Helmholtz function (ii) Gibbs Function (iii) Irreversibility
(b) Give comparison of Carnot cycle and Rankine cycle for vapour.
(c) In a steam power cycle, the dry and saturated steam is supplied at 15 bar. If the efficiencies neglecting the pump work.
Q. 4 (a) Draw the Diesel cycle on p-v and T-s diagram. Also derive expression for air standard efficiency with usual notations for the cycle.
(b) In an ideal Brayton cycle, the ambient air at 1 bar - 300 K is compressed to 6 bar and the maximum cycle temperature is limited to 1200 K . if the heat supply is 120 MW, find (i) The thermal efficiency of the cycle (ii) work ratio (iii) power output and (iv) mass flow rate of air. Also show the cycle on $\mathrm{p}-\mathrm{v}$ and T -s diagram.
Q. 5 (a) Explain the method of determination of calorific value of a given fuel by Bomb calorimeter with neat sketch.
(b) Explain briefly Dalton's law and Gibbs-Dalton law applied to mixture of perfect gases.

OR

Q. 5 (a) State the Avogadro's law. 02
(b) A mixture of hydrogen and oxygen is to be made so that the ratio of H_{2} and O_{2} is $3: 1$ by volume. If the pressure and temperature are 1 bar and $30^{\circ} \mathrm{C}$ respectively. Calculate (i) the mass of O_{2} required (ii) the volume of the container.
(c) Following results were obtained when a sample of gas was tested by Junker's gas calorimeter.
Volume of sampled gas : $0.08 \mathrm{~m}^{3}$
Pressure of gas supply : 52 mm of water, temperature of gas: $12^{\circ} \mathrm{C}$
Barometric pressure : 750 mm of Hg
Weight of water heated by gas : 30 kg
Temperature differ hace of circulated water: $15^{\circ} \mathrm{C}$
Steam condenset 0 collected : 0.06 kg
Determine the hingher and lower calorific value per m^{3} of gas at temperature of $15^{\circ} \mathrm{C}$ and

