Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-IV Examination-Nov/Dec-2011

BE SEM-IV Examination-Nov/Dec-2011					
Subi	ect (Date: 25/11/2011		
·		Name: Engineering Thermodynamics	2000 20, 11, 2011		
•		•	Fotal marks 70		
1 11111	e: U2	2.30 pm -5.00 pm	Total marks: 70		
Instru	ıctior	ıs:			
1115010	1.				
	2.	Make suitable assumptions wherever necessary.			
	3.	Figures to the right indicate full marks.			
	4.	Use of molier chart and steam table is permitted.			
Q-1	(a)	State the purpose served by each thermodynamic law	07		
_	(b)	· · · · · · · · · · · · · · · · ·	03		
	(c)	Carnot cycle is not practical. Justify.	04		
Q.2	(a)	What is the difference between Otto cycle and diesel cy	vcle? 07		
Q. <u>2</u>	(a)	Explain why the higher efficiency of the Otto			
		compared to diesel cycle for the same compression rate	2		
		not a result of practical importance.	10 15		
	(b)	1	veen 07		
	(D)	the temperature limits of 300k and 1800k. Estimate			
		optimum compression ratio and the corresponding the			
		efficiency.	IIIIai		
		OR			
	(b)				
		At the beginning of isentropic compression the tempera			
		is 15° c and pressure is 0.1 MPa. Heat is added until	^		
		temperature at the end of constant pressure process is 1	480°		
		c . Calculate			
		(1) at off ratio.			
		(2) cycle efficiency			
		(3) M. E. P.			
		Take, $\gamma = 1.4$, R = 287 NM/Kg K,			
		$C_v = 0.718 \text{ KJ/Kg K}, C_P = 1.005 \text{ KJ/Kg K}$			
		Assume Mass of air = 1 Kg			
Q.3	(a)	Explain the concept of available energy, unavail	lable 07		
		energy.			
	(b)	What is the law of degradation of energy?	04		
	(c)	State the Clausis Clapeyron equation.	03		
		OR			
Q.3	(a)	Using Maxwell relations derive the Causius clape	yron 07		
-	` /	equation.			
	(b)	•	ot of 03		
	. /	availability?	_		
	(c)		nore 04		
		harmful than that at a lower temperature discuss.			

(a)	Why the Carnot engines is the most efficient engine for a	07	
(b)	A Carnot engine receives 4000 KJ as heat addition at 337°c and rejects energy at triple point of water. Calculate	07	
	(1) thermal efficiency		
	(2) The net work output in KJ		
	If the efficiency of an irreversible engine is 70 % of Carnot engine. Find the % change in heat rejected for the same input and fluid temperature.		
	OR		
(a)	Differentiate between internal energy of reaction and enthalpy of reaction.	04	
(b)	Discuss the method for determining the calorific value of	07	
(c)	Define: (1) exothermic reaction (2) endothermic reaction	03	
(a)	Explain Binary vapour cycle with P-V and T-S diagram.	07	
(b)	A steam turbine of a power plant operating on ideal rankine of cycle receives steam at 20 bar, 300° c at the rate of 3 Kg/s and it exhausts at 0.1 bar. Determine the following		
	(1) Net power output(2) Rankine cycle efficiency		
	OR		
(a)	Why Carnot cycle is not practical for steam power plants? Explain in brief.	05	
(b)	Derive Vander wall's equation.	05	
(c)	Explain 1. Isothermal compressibility 2. Adiabatic compressibility	04	
	Howillage *******		
	Silv		
	(a) (b) (a) (b) (c) (a) (b) (c)	given source and sink temperature? Explain. (b) A Carnot engine receives 4000 KJ as heat addition at 337°c and rejects energy at triple point of water. Calculate (1) thermal efficiency (2) The net work output in KJ If the efficiency of an irreversible engine is 70 % of Carnot engine. Find the % change in heat rejected for the same input and fluid temperature. OR (a) Differentiate between internal energy of reaction and enthalpy of reaction. (b) Discuss the method for determining the calorific value of solid and liquid fuels. (c) Define: (1) exothermic reaction (2) endothermic reaction (a) Explain Binary vapour cycle with P-V and T-S diagram. (b) A steam turbine of a power plant operating on ideal rankine cycle receives steam at 20 bar, 300° c at the rate of 3 Kg/s and it exhausts at 0.1 bar. Determine the following (1) Net power output (2) Rankine cycle efficiency OR (a) Why Carnot cycle is not practical for steam power plants? Explain in brief. (b) Derive Vander wall's equation. (c) Explain 1. Isothermal compressibility	