Seat No.:	Envolment No
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION - WINTER 2013

Subj	ject	Code: 131902 Date: 28-11-2013	
Subj	ject	Name: Machine Design and Industrial Drafting	
		2.30 pm - 05.30 pm Total Marks: 70	
Instru			
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	E	03
		(1) Proof Resilience(2) Preferred number	
		(3) Principle stress	
	(b)	Explain following AutoCAD command with Example:	06
	()	(1) Offsetting	
		(2) Trimming	
		(3) Chamfering	
	(c)	Determine the thickness of a 120 mm wide uniform plate for safe continuous	05
	(-)	operation of the plate is to be subjected to tensile load that has maximum	•••
		value of 250 KN and minimum value of 100 KN. The properties of the plate	
		material are as follows:	
		Endurance limit=225 N/mm ² ,	
		Yield point stress=300 N/mm ² ,	
Q.2	(a)	Factor of safety=1.5 A double riveted double cover but joint in plates 20mm thick is made with	07
Q. -	(4)	25mm dia. Rivets at 100mm pitch. The permissible stress are f_t =120 N/mm ² ,	07
		Shear stress= 100 N/mm ² , f _c = 150 N/mm ² . Find the Efficiency of joint, taking	
		the strength of the rivets in double shear as twice than that of single shear.	
	(b)		07
		coupling in which the flange is larger at the end of the shaft.	
		Power of the engine = 3mw	
		Speed of the engine = 100 r.p.m. Permissible shear stress in bolts and shafts = 60 N/mm ²	
		No. of bolts used = 8	
		Pitch circle dia. Of bolts = 1.6* dia. Of shaft	
		Find (1) Dia. Of shaft	
		(2) Dia. Of bolt	
		(3) Thickness and dia. Of flange.	
	(b)	OR Design a knowledge ignet for a tip rod of a giroular spection to quetain a may mult	07
	(D)	Design a knuckle joint for a tie rod of a circular section to sustain a max. pull of 70kN. The ultimate strength of the material of the rod against tearing is	U/
		420N/mm ² . The ultimate tensile and shearing strength of the pin material are	
		510N/mm ² and 396N/mm ² respectively. Determine the tie rod section and	
		pin section . Take F.S.=6.	
Q.3	(a)	Why are square threads preferable to V threads for power transmission?	03
~	(b)		04
	(c)	The lead screw of a lathe has Acme threads of 50mm outside dia. And 8mm	07
		pitch. The screw must exert an axial pressure of 2500N in order to drive the	
		tool carriage. The thrust is carried on a collar 110mm outside dia. And 55mm	
		inside dia. And the lead screw rotates at 30r.p.m.	

		Take C.O.F.= 0.15 for screw	
		C.O.F.=0.15 for collar	
		OR	
Q.3	(a)	What do you understand by tensional rigidity and lateral rigidity?	03
	(b)	A hollow shaft has greater strength and stiffness than solid shaft of equal weight. Explain.	04
	(c)	A steel spindle transmits 4Kw at 800r.p.m. The angular deflection should not exceed 0.25 ⁰ per metre of the spindle. If the modulus of rigidity for the material of the spindle is 84x10 ³ N/mm ² . Find the dia. Of spindle and the shear stress induced in the spindle.	07
Q.4	(a)	Define following: (1) Arm of lever, (2) Leverage, (3) Displacement ratio Differentiate between simple and compound lever.	07
	(b)	Why a boss is needed at the fulcrum of the levers.	04
	(c)	State the application of hand and foot levers.	03
	()	OR	-
Q.4	(a)	State the applications of splined shaft	03
Q	(b)	How does the working of a clamp coupling differ from that of a muff coupling?	04
	(c)	A 45mm diameter shaft is made of steel with a yield strength of 400 N/mm^2 . A parallel key of size 14 mm wide and 9 mm thick made of steel with a yield strength of 340 N/mm^2 is to be used. Find the required length of key, if the shaft is loaded to transmit the max. permissible torque. Use max. shear stress theory and assume F.Q.S. = 2	07
Q.5	(a)	What is surface roughness? How it is indicated on drawing?	03
~	(b)	Explain in brief creating 3D objects using Autocad by suitable example.	04
	(c)	What is fit ? Explain different types of fits with applications.	07
	(-)	OR	0.
Q.5	(a)	Draw the assembly drawing of steam stop valve or Tailstock.	07
~.··	(b)	Explair with neat sketch design procedure of coupler.	07
	(~)	2p	37

Determine (1) The power required to drive the screw.

(2) The efficiency of the lead screw.
