Seat N	lo.: _	Enrolment No	
	GUJARAT TECHNOLOGICAL UNIVERSIT BE- VII th SEMESTER-EXAMINATION – MAY/JUNE- 201		
Subject code: 170605 Date: 29/0 Subject Name: Advanced Structural Analysis		29/05/2012 Marks: 70	
Q.1	(a) (b)		07 07
Q.2	(a) (b)	Write a detail on "Process of Discretization" on finite element analysis. Determine the shape functions for the Constant Strain Triangle. Use polynomial functions. OR	07 07
	(b)		07
Q.3	(a)	Derive the expression of a stiffness matrix of a member of a grid structure with usual notations.	07
	(b)		07
Q.3		Analyze the frame for fig.2 by stiffness matrix method using member approach	14
Q.4	(a) (b)	Explain detail on "Beam with Elastic supports". Write a computer program on analysis of continuous beam using stiffness matrix method using C/C++. OR	07 07
Q.4	(a) (b)	Explain "Incremental analysis with Iteration" technique. Derive the shape functions for four noded quadrilateral elements.	07 07
Q.5		A propped cantilever beam of length of 10 m fixed at one end supported by a roller at the other end carries a 20 KN point load at the centre of the span. By taking e = 200 GPa and I = 24 x 10 ⁻⁶ m ⁴ . Using finite element determine: 1. Deflaction under load 2. SF and BM at mid span 3. Reactions at supports	14
Q.5	(a)	OR Determine the consistent nodal vector due to loads acting on the beam	07
	(b)	shown in fig. 3. Write short note on "Pre and Post Processors" on FEA packages. ***********************************	07

