GUJARAT TECHNOLOGICAL UNIVERSITY
 B. E. - SEMESTER - VII • EXAMINATION - WINTER 2012

Subject code: 170605
Date: 28/12/2012

Subject Name: Advanced Structural Analysis (Department Elective - I) Time: $10.30 \mathrm{am} \mathbf{- 0 1 . 0 0} \mathbf{~ p m}$
 Total Marks: 70 Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. \boldsymbol{T} ake Modulus of elasticity $=\mathbf{2 0 0} \mathbf{G P a} \&$ Poisson's ratio $=\mathbf{0} \mathbf{2 5}$, unless given.
Q. 1 (a) For the beam shown in fig.- $\mathbf{1}$, if the displacement at joints $\mathrm{B}(\theta \mathrm{b})$ and $\mathrm{C}(\theta \mathrm{c})$ are 36.16/EI (anticlockwise) and -4.02/EI (clockwise) respectively due to the loading given on it. Determine member end actions and draw S.F. \& B.M. diagrams.
(b) Write a C/C++ program to read the geometrical and structural data for plane truss structure and prepare member stiffness matrix along structural axis (i.e S_{MS} matrix) for each member. Read data from user defined input file and print appropriate results in user defined output file. Also prepare a sample input file for a structure shown in fig.-2.
Q. 2 (a) Derive the relation for action or displacement vector on member axis and structure axis for plane frame.
(b) For the plane frame shown in fiq.-3, determine load vector for member BC along structure axis using rotation transformation matrix.

OR

(b) List various methods for solution of linear simultaneous equations using matrices. Give difforithm or $\mathrm{C} / \mathrm{C}++$ program for any of them.
Q. 3 Analyse the glane truss shown in fig.-2 and determine deflections and reactions of the joints. Determine member end actions also and tabulate them.

OR

Q. 3 Analyse the plane frame shown in fiq. $\mathbf{3}$ using member stiffness approach, neglecting axial deformation condition. Use of symmetry may be permitted. Determine support reactions. Draw B.M diagram neatly. Take $I / A=100$.
Q. 4 Find the displacement of the composite structure shown in fig.-4. Beam AB is made up of concrete ($\mathrm{E}=20 \mathrm{GPa}$) with rectangular cross section of 150 $\mathrm{mm} \times 200 \mathrm{~mm}$, while cable CE is of steel ($\mathrm{E}=200 \mathrm{GPa}$) with 10 mm diameter.

OR

Q. 4 A symmetrical plane grid shown in fiq.-5 is made up of steel pipes of 300 mm outer diameter and of 8 mm thickness. Determine displacement at joints and member end actions. Draw B.M, S.F and Torsional moment diagrams. Take G=80 GPa.
Q. 5 (a) List various steps involved in solution of problem using Finite Element 05 Method and explain descritizations in details.
(b) A steel tapered rod of 500 mm length, 40 mm diameter at top end and 20 09 mm diameter at bottom is kept vertical with fixed at top. Determine stresses \& strains in the rod due to its self weight and additional 20 kN load acts in downward direction at free end. Take minimum two elements of 2 noded for your calculations.

OR

Q. 5 (a) Explain the use nonlinear analysis of structure. List various methods to be used in nonlinear analysis of structure and explain any one of them.
(b) Determine the deformation at joints of a space truss shown in fig.-6 using Member Stiffness Approach. Use of symmetry is permitted.

Figures

Fig. 1

Fig. 2

Fig. 4

