www.studentsuvidha.in

B.E.
Fifth Semester Examination, May-2008
Analysis & Design of Algorithms(CSE-305-E)

MNote ; Attempt any five questions. All questions carry equal marks,

(2. 1. ta) Write short notes on asymptotic notations. [

Ans., Asymptotic Notation : The notations describe the asymplotic running time of an algorithm are
defined in terms of functions whose domains are the set of natural numbers N=4{0,1, 2, }. There are
different types of notations :

(i} 8 -Notation : The wors|-case running time of inscriion sort is T{n) = & {“?'J- For a given Tunclhion
gin), we denote by 8(g(n)) the set of functions,

B(e(n)) ={f(n): there cxist positive constants Cp,C; and no such that 0= Cipn) =
f(n) = Cag(n} for all n = ng }. The definition of 8{g(n)) requires that cvery member {(n) € 8(g(n)) be
asymplotically non-negative, that s, that [{n) be non-negative wherever n s sulliciently.

(ii} O-Notation : The f-notation asymplotically bounds a [unction from above and below, When we
have only an asymplotic upper bound, we use ()-notation. For a given function g{n}, we denote by
Ofgin)) the set of lunctions,

Ofg(n))={ f(n) : there exist positive constanl C and no such that O =< f(n) = Cg(n)
foralln = ng }.

(iii) L2-notation : £2-notation provides an asymptotic lower bound. For a given lunetion gin), we
denote by Q{gin}) the set of functions,

Q(g(n))=1{l(n) : there exist positive constants C and no such that O = Cg(n) = f{n)
foralln = ng }.

. 1. (b) Explain the procedure Quick-sort with an example. Also analyse it in best, average and
worst cases. 14

Ans. Quick-Sort : Quick sort processes a very good average-case behaviour amaong all the sorting
technigues. This is developed by C. AL R. Hoare.

The Quicksont algorithm works by partitionary the array to be sorted. And each partition is in turn
sorted recursively. In partition, one of the array elements is chosen as a key value. This key value can be
the first element of an array. That is, if a is an array then key =a|0]. And rest of the array elements are
grouped into two partitions such that

e ()ne partition contains elements smaller than the key value.

- Another partition contains clements laver than the key valoe,

Example :

45 20 7 14 o8 61 97 30 o9 o0

Here, 45 is selected as a key value. Then, two indices namely, low and high are used to indicate the
element (key+1) and the last element. The low index starts on the left and selects an element that is
greater than the key value. Then these clements are interchanged. The process is repeated until all

http://studentsuvidha.in/

www.studentsuvidha.in

elements to the left of the key arc smaller than the key value. And all element to the right of the key are
greater than the key value.

The steps involved in placing the key value, 45 in its proper position in the array are given below.
The elements being compared are encircled on each lines.

@ @

14 e 81 9T 39 9 9
@ 5 @ ® 68 v » % w s
hig
@ % 77 w4 e & 9o 3 9% (%)
high
@ 2 77 14 e e o7 39 (s8) 9
high 39<4$ interchange
7
@ 282 7T 14 68 e 97 é o T
@ % 77 @ 68 61 97 39 9 90
o
% 77 14 . 81 97 39 99 90
S
@ % 77 14 68 8 é 39 9 90
gh
2 77 14 e (1) 97 33 9 9%
high
@ 26 77 14 61 97 39 09 0 ...
45 and 14
% 77 @ 68 e o7 23239 9 90
W28 3% 45 68 &1 o7 7w %

value <45 value <45

The given array has been partitioned into two subarrays. The first subarray is { 14, 26, 39 } and the
second is {68, 61,97, 77, 99,90}, We can repeatedly apply this procedure on each of these subarrays until
the entire array is sorted.

EMiciency of Quick-Sort ;: The timing analysis of quicksort algorithm is

T(n) = {(? g }
n+T(w2) + T (n/2)

Cn — time required to partition the array

T (n/2) -+ lime required to sort the left or right subarray.

Worst-Case Analysis : In this casc, on every function call, the given array is partitioned into two
subarrays.

http://studentsuvidha.in/

www.studentsuvidha.in

T(n) =Cn+T(0)+ T (n-1)
=Cn+ T(n-1)
=Cn + C{n=1) + T(n-2)
=Cn+ C{n—1) + C(h—2) + T(n-3)

= cf.. + Ca=1) + C(n=2) + ...+ C(1) +] (0)
=C[n+ (n-1) + (=2} + ccoccoo.... +241]

—c|® (n+1})
B 2
o o g o S,
== + S (0 (n")

Best-Case Analysis : The best case timing analysis is possible when the arrary is always portitioned

in half
T(n) =Cn+ T (2} + T (n/2)

=Cn + 2T (n/2)
Let nis power of 2ie,, n=2*
k 2 v ek
Thus, T(2% =2T (2% +C (27

=2T(* N +cC2*

= 1[21‘ (2% + cz““'] + C2%
= 2T2*? + 202

=2 [zT 2+ c2* "3] +2ck
=271 + 32"

=257 (2% %) + KC2©

=2T (1) + kCn

http://studentsuvidha.in/

www.studentsuvidha.in

. 3. (a) Describe the Greedy method and Divide-AND-Conquer strategy to find optimal solution
to the problem. To which type of problems they are applied ? 10

Ans. Greedy Method : A greedy algorithm obtains one optimal solution to a problem by making a
sequence of choices, For cach decision point in the algorithm, the choice that seens best at the moment is
chosen, This heuristic strategy does not always produce an optimal solution, but as we saw in the
activity-selection problem, sometimes it does. To develop a greedy algorithm, we consider the following
steps

(i) Determine the optimal substructure of the problem.

(ii) Develop a recursive solution.

(iii) Prove that at any stage of the recursion, one of the optimal choices is the greedy choice. Thus,
it is always safc to make the greedy choice,

(iv) Show that all but one of the subproblems induced by having made the greedy choice are empty.

(v) Develop a recursive algorithm that implements the greedy strategy.

{vi) Convert the recursive algorithm Lo an iterative algorithm,

We design greedy algorithms according to the following sequence of steps :

(i) Cost the optimization porblem as one in which we make a choice and are left with one
subproblem to salve.

(i1} Prove that there is always an optimal solution to the original problems that makes the greedy
choigce, so that the greedy choice is always safe.

(iii) Demonstrate that, having made the greedy choice, what remains is a subproblem with the
property that if we combine an optimal solution to the subproblem with the greedy choice we have made,
we arrive al an optimal solution to the original problem.

Divide-and-Conquer Approach : Many useful algorithms are recursive in structure to solve a given
problem, they call themselves recursively one or more times to deal with closely related subproblems,
These algorithms typically follow a divide-and-conquer approach : they break the problem into several
subproblems that are similar to the original problem but smaller in size, solve that subproblems
recursively and than combine these solution to create a solution to the original problem.

The divide-and-conguer paradigm involves three steps at each level of the recursion ;

Divide : The probelm into a number of subproblems,

Conquer : The subproblems by solving them recursively. In the subproblem sizes are small enough,
just solve the subproblems in a straightforward manner.

Combine : The solutions to the subproblems into the solution for the original problem.

The fractional knapsack problem is solvable by or greedy strategy. To solve the fractional problem,
we first compute the value per pound vy/w; for cach item. Obeying a greedy strategy, the thief begins by

http://studentsuvidha.in/

www.studentsuvidha.in

taking as much as possible of the item with the greatest value per pound. If the supply of that item is
exhausted and he can still carry more, he takes as much as possible of the item with the next greatest value
per pound and so forth until he can’t earry any more.
Q. 3. (b) Explain Strassen’s matrix multiplication with suitable example. 10
Ans. Strassen’s Matrix Multiplication : Strassen’s algorithm is used for multiplying n n matrices,

which run in & [l:tlgT} =0 {nz'm} time. For sufficiently large values of n, therelore, it oul performs the
naive & {nj} natrix-multiplication algorithm, MATRIX-MULTIPLY.

Strassen's algorithm can be viewed as an application of a familiar design technique : divide and
conguer. Suppose we wish to compute the product C=AB, where each of A, B and C are nXn matrices,
Assuming that n is an exact power of 2, we divide each of A, B and C into four n/2x2/2 matrices, rewriting
the equation C = AB as follows.

[: ?1] - (: 3] (; 'fi] ()

Equation (1)} corresponds to the four equations
r = ae + bg,
s =afl + bh,
t=ce + dg,
u=cf + dh
Each of these four equations specifies two multiplication of n/2 % n/2 matrices and the addition of
their, n/2% n/2 products, Using these equations to define a straightforward divide-and-conquer strategy,
we drive the following recurrence for the time T(n) to multiply two nxn matrices :
T(n) 8T (n/2) + 6 (n*)
Strassen's method has four steps :
(i) Divide the input mairices A and B into n/2 X n/2 submatrices,
(ii) Using & (nzj scalar additions and subtractions, compute 14 matrices A, By, A3, B3,
conscnssnnnnes A7, By €ach of which is 0/2 x o/2.
(iii) Recursively compute the seven matrix products
Pi=ABifori=1,2 .., 7.
{iv) Compute the desired submatrices r, 5, (, u of the result matrix C by adding and/or subtracting
various combinations of the P, matrices. Using only 8 (n’) scalar additions and subtractions.

Q. 4. (a) Use Dijkstra’s algorithm to find the single source shortest paths for the following graph
taking vertex 's' as the source. 10

http://studentsuvidha.in/

www.studentsuvidha.in

Ans. Dijkstra’s Alporithm : Ditkstra’s algorithm solves the single-source shartest-paths problems
v wirighted, directed graph G = [V, E) Tor the case in which all edge weighs are non-negalive.

T hstias alponihm maistams a set of § of vertices whose final shortest-path weights form the
sowrces. Tia isfor all vertices VES, we have dv] = a(s, v). The algorithm repeatedly selects the vertex
v W5 with the minimum shortest path estimate, inserts v into S and relaxes alt edges leaving g in the
firtlowing imphementition

Dijkstra (Ge,w, 51 :

(o Ivesandie Snehe-Seneeoe (08 %)

(U S =

T L R

(i Wk g o

(v B g == EXTRALT MIN ()

07 B e BT

puink P cpetes ot VoE Aulp i o

Cemibl B MR LAY (i, v ey

http://studentsuvidha.in/

www.studentsuvidha.in

Figure shows the excewtion of Dijkstra's algorithm. The sowece s the Jelimoest vertex, Tl
shortest-path estinutes are shown within the vertices and shaded edpes indicate predecessor vilues © il
edge (1, x) is shaded, the & (x) = 1. Black vertices arc in the set § and while verlces are in prioeity gueu.
= ¥ — 5 {a). The situation just before the first iteration of the while loop ol lines 45, The shaded vertex
has the minimum d-value and is chosen as vertex tin lHne S(b}-{0), The suuabon alicr cach suceessive

s By e o
S K

1
NPT] QTP

iteration of the while loop. The shaded vertex in cach part is choscn on wertex 1 in Bine S of the ned
iteration, The d and & values shown in part (D are the final values,

(). 4. (b) Write any one algorithm to fnd minimum spannir g tree of the praph, Take suitable
example to explain it, "

Ans, Minimum Spanning Trec :

Input Description : A graph G = (V, E) with weighted edges.

Probelm : The subsct of E of (; of minimum weight [orm g e on 'V

Excerpt From : The Algorithm Design Manuval : The minimum spenning tree (M51) al a praph
defines the cheapest subset of edges that keeps the graph in one conneated component. Toiephione
companies are particularly interested in minimum spanning rees, breause {he minimen paonang tree of
a sct of sites defines the wiring scheme that conneets the sites using as e weore as possible,

A tree T is a spanning tree of a connected graph G (V, E) such b

(1) every vertex of G belongs to an edge in T and

(11) The edges in T form a tree.

Figure represent the feasible communication lincs between 7 cities and the cost of an cdge could e

interpreted as the actual cost of building that link (in lukbs of rupee-t Ui mindoal spanning teee
problem lor this situation could be the building of a least cost conmunication network, MST are delined
only on undirected graphs.

Q. 5. (a) Write backtracking algorithm to find the chromatic number of a given praph. 1

Ans. Backtracking : The backtracking method is based on the systematically in question of the
possible solution where through the procedure, sel of possible solutions are rejecied belare even
examined, So their number is getting a lot smaller. An important requirement which must be fulfilled s
that there must be the nroper hierarchy in the systematically peocedare ol soliviions s That cete oof

http://studentsuvidha.in/

www.studentsuvidha.in

solutions that do not fulfil a certain requirement are rejected before the solutions are produced. For this
reason the examination and produce of the solutions, follows a model of non-cycle graph for which in this
case we will consider as a tree. The root of the tree represents the set of all the solutions. Nodes in lower
level represents even smaller sets of solutions, based on their properties.

Common use of backtracking is in path finding algorithms where function traces once a graph of
nodes and backtracks until it finds the least cost path. Backtracking is used in the implementation of PL.
(such as lcon, Planner and Prolog) and other areas such as text passing.

(2. 5. (b) Find all Hamiltonian cycles in the following graph wsing backtracking. 19

i {3} 8) 6]

Ans. Hamiltonian Cycles : A Hamiltonian cycle of a directed graph G = (V, E) is a simple cycle that
contains each vertex in V. Determining whether a directed graph has a Hamiltonian cycle is MP-complete.

The problen: of finding a Hamiltonian cycle in an undirected graph has been studied for over a
hundred years. Formally, a Hamiltonian cycle of an undirected graph G = (V, E) is a simple cycle that
contains each vertex in V. A graph that contains a Hamiltonian cycle is said to be Hamillonian; otherwise,
it is non-Hamiltonian,

We can define the Hamiltonian-cycle problem, “Does a graph G have a Hamiltonian cycle 7" as a
formal language :

HAM CYCLE ={ (G) : G is a Hamiltonian graph}

How might an algorithm decide the language HAM_CYCLE ? Given a problem instance (G), one
possible decision algorithm lists all permutations of the vertices of G and then checks each permutation to
see if it is a Hamiltonian path. Whta is the running time of this algorithm ? If we use the “reasonable”
cncoding of a graph as its adjacency matrix, the number m of vertices in the graph is Q (Q), where
n= |[{(3)| is the lenpth of the encoding of G. There are m! possible pzrmutation of the vertices and
therefore the running time is @ (m!) = @ (V') | — Q (2 V), which is not O (n*) for any constant K.
Thus, this naive algorithm does not run in polynomial time.

Q. 6. Explain Dynamic Programming method to solve a problem and use the same method to solve
the lollowing Travelling-salesperson Problems with given distance matrix : 20

0 5 10 15
3 0 6 8
4 12 0 11
77 8 0

Ans. Dynamic programming like the divide-and-conquer method, solves problems by combining
the solutions o subproblems. A dynamic-programming algorithm solves every subproblem just once and
then saves its conquer in a table, thereby avoiding the work of recomputing the conquer every time the sub
subproblem is encountered.

Dynamic programming is an algorithm that solves the problem of matrix-chain multiplication, We
are given a sequence (chain) (Aq, Az, v, Ay) 0 n matrices to be multiplied and we wish to compute

http://studentsuvidha.in/

www.studentsuvidha.in

We can cvaluate the expression Aj Az ... Ap using the standard algonithm for multiplying pairs
of matrices as a subroutine once we have parenthesized it to resolve all ambiguities in how the matrices
arc multiplied together. A product of matrices is fully parenthesized if it is either a single matrix or the
product of two fully parenthesized matrix products, surrounded by parentheses. Matrix multiplication is
associative and so all parenthesizations yield the same product. For example, if the chain of matrices is
(A, Az, A3, Aq), the product A; Az A3 A4 can be fully parenthesized in five distinct way :

(A1 (Az (A3 Ag)))
(A1 (Az A3) Ag))
(A1 Az) (As Aq))
((A1 (A2 A3)) As)

(((A1 Az) As) Ag)

The matrix-chain multiplication problem can be stated as follows : given a chain
(Ay, Az oo, Ag) of n matrices, where fori=1,2, ... , 0, matrix A; has dimension Pi; % P;, fully
parenthesize the product Ay Aj.......A, in a way that minimizes the the number of scalar
multiplications.

Note that in the matrix-chain multiplication problem, we are not actually multiplying matrices. Qur
goal is only to determine an order for multiplying matrices that has the lowest cost. Typically, the time
invested in determining this optimal order is more than paid for by the time saved later or when actually
performing the matrix multiplication,

Travelling-Salesman Problem : Travelling-salesman problem is the problem of determining the
shortest closed tour that connects a given set of n points in the plane. Figure shows the solution to a
7-point problem. The general problem is NP-complete and its solution is therefore b.

In the travelling-salesman problem, a salesman must visit n cities. Modelling the problem as a
complete graph with n vertices, we can say that the salesman wishes to make a tour, or Hamiltonian cycle,
visiting each city exactly once and finishing at the city he starts from. There is an integer cost c(i, j) to travel
from city i to city j and the salesman wishes to make the tour whose total cost is minimum, where the total
cost is the sum of the individual costs along the edges of the tour, for example a minimum-cost tour is (v,
w, x, i) with cost 7, The formal language for the corresponding decision problem is

5
TSP ={(G, C,K) : G =(V, E) is a complete graph, C is a function from VXV + Z K € Z, and
G has a travelling salesman tour with cost at most k}.

http://studentsuvidha.in/

www.studentsuvidha.in

(Q. 8 Write short notes on the following : 20

(a) Diferentiate hetween deterministic and non-deterministic algorithms

(b} Cook's theorem

(¢c) NP-Hard and NP-Complete problems

Ans. (a) Difference between Deterministic and Non-deterministic Algorithms : Aloorithms such
that the result of every operation is uniquely defined are called deterministic algorithms,

A non-deterministic algorithm is an algorithm with one or more choice points where multiple
different continuations are possible, without any speaification of which one will be taken, A shopping list
can b viewed as very simple non-delerministic algorithm, Every item on the list is a dircetive to find the
indicated product, but the order in which to find them is not indicated.

A deterministic algorithm is an algorithm which, in formal terms, behaves predictably. Given a
particular input, it will always produce the same output, and the underlying machine will always pass
through the same sequence of states.

One simple model for deterministic algorithms is the mathematical function; just as a function
always produces the same O/P given a certain input, so do deterministic algorithm,

(b) Cook's Theorem : In computational complexity theory, the Cook-Levin theorem, aslo known as
Cook’s theorem. States that the Boolean satisfiability problem is NP-complete. That is, any problem in NP
canbc reduced in polynomial time by a deterministic turing maching to a problem of determining whether
a Boolean formula is satisfiable,

An important consequence of the theorem is this : If there were a deterministic polynomial time
algorithm for solving Boolcan satisfiability, then there would exists a deterministic polynomial time
algorithm for solving all problems in NP,

Cook’s Theorem : !

http://studentsuvidha.in/

www.studentsuvidha.in

[(x) = 1il[SAT (F(x)) = 1
That {a) hodds has already been shown, Now Let | be any decision problem in NP We know that |
alser bebongs 10 ADA-NE, So there is o nor-deterministic Ada program NA; for [and @ polynomial p(n)
such 1hat, [or any xin i, 'Ilf" Ay = 1l
NCOMP (NA;x,'p(n)) = 1
To shaw that SAT is NP-complete, we build an instance of SAT, H (NAQ (Xupay) with the property
H (NA) (Xmm) s satishable
ir
NOCM P (NA[x, p(n)) = 1
{c) NP-Hard and NP-Complete Problems : NP-hard and NP-complete problem polynomial time
reductions provide a formal means for showing that one problem is at least as hard as another, to within
i polynomial-time fctor. That s, i Ly = pls, then Ly is not more than a polynomial factor harder them
L3, which i why the “less than or equal 1o notation for reduction is mnemonic,
A banguage L C #L 1}' is NP- complete if
(i) L& NF, and
(i} L' = p Lforevery L' € NP,
If 4 Janpuage L satisfics property 2, but not necessarily property 1, we say that 1, is NP-Hard. We
also deline NPU 1o be the class of MP-complete languages |

http://studentsuvidha.in/

