www.studentsuvidha.in

B.E.
Fifth Semester Examination, December-2007
Analysis & Design of Algorithms (CSE-305-E)

Note : Attempt any five questions. All questions carry equal marks.

(). 1. (a) Differentinle between space and time complexity of an algorithm. 6

Ans. An algorithm is a s+t of rules for carrying oul calculations cither by hand or on a maching.
Algorithm is a branch of Computer Science that consists of designing and analyzing computer algorithms:

{1} The “design™ pertains (o :

{a) The description of algorithm at an abstract level by means of a pesudo language and

(h) Proofl of corrcetness that is, the algorithm solves the given problem in all cascs,

{ii) The “analysis” deals with performance evaluation (Complexity analysis).

Algorithm Analysis : The complexity of an algorithm is a function g(n) that gives the upper bound
of the number of operations (or running time) performed by an algorithm when the input sive is n.

In general, the time taken by an algorithm grows with the sive of the input, so 11 is traditional to
describe the running time of a program as a function of the size of its input. To do so, we need to deline the
_ lerms “running time” and “size of input”,

The best notion for input size depends on the problem. For many problems, such as sorting or
computing discrete Fourizr transforms, the most natural measure is the number of items in the input, for
cxample, the array size n for sorting.

The running time of an algorithm on a particular input is the number of primitive operations or
“steps” cxecuted. I is convenient to define the notion of step so that it is #s machine—independent.

Q. 1. (b) Explain Merge-Sort with an example. Also analyze it in best, average and worst cases.

Ans. Merge-Sort is a sorting lechnigue which divides the array inlo subarrays of size 2 and merge
adjacent pairs, We then have approsimately n/2 array of size 2. This process is repeated until there is only
ong array remaining of size n,

Supposc an array a with n clements a|1], a]2), ..., a]N] 15 in memory. The merge-sort a will first be
deseribed by means of a specific example,

Example : Supposc the array a contains 12 elements as follows :

85, 76, 46, 92, 30, 41, 12, 19, 93, 3, 50, 11

Euch pass ol the werge sort algorithm will start at the beginning of the array A and merge pairs of
sorted subarrays as follows :

Pass I: Merge ¢ach pair of elements to obtain the following list of soricd pairs

176 85| |46]92] [30[a] [w2]w] [3[o] [n]s0]

Pass 11 = Merge cach pair of pairs to obtain the lisis of sorted elements,

[a6]6[8s[o2] [2]w[wfa] [s3Tuls]e]

http://studentsuvidha.in/

www.studentsuvidha.in

Pass 111 ; Again merge the two subarrays to get two lists

[2[w]s0|as6]mses|o] [3]n]|s]sn]
Pass IV : Merging the above two lists, we get

[3[ul2]w]n]alw]s0]6]es]o2]0]

In Pass IV, we get sorted list of elements of array a with the size 12,
(}. 2. (a) Write algorithms for Union and find operations for disjoint sets. (1]
Ans. A disjoint-set data structure maintain a collection § = {8, 5, ..., Sk} of disjoint dynamic

scts. Each set is identified by a representative, which is some member of the set. In some applications, il
docsn’t matter which member is used as the representative; we only care that if we ask for the
representative of a dynamic set twice without modifying the set between the requests, we pet the same
answer both times. In other applications, there may be a prespecified rule for choosing the representative,
such as choosing the smallest member in the set.

Union (x,¥) unites the dynamic sets that contain x and y, say S, and 8y into a new st that is the
union of these two sets. The two sets are assumed to be disjoint prior to the operation. The representative
of the resulting set is any member of §, US,, although many implementations of UNION specifically
choose the representative of either Sy and Sy as the new representative, Since, we require the sets in the
collection Lo be disjoint, we “destroy” sets S, and S, re i them from the collection 's',

Algorithm (UNION) :

UNION (x, y)

(i) LINK (FIND_SET (x), FIND_SET (y))

FIND SET (x) returns a pointer to the represeniative of che (unique) set containing x,

Algorithm :

FIND SET (x)

(i) IFx = p[x]

(ii) Then p [x] = FIND _SET (p [x])

{iii) Return p [x]

The FIND_SET procedure is atwo-pass method : It makes one passup the find path to find the root
and it makes a second pass back down the find path to update each node so that it points directly to the
rool. Each call of FIND_SET (x) return p [x] in line 3. I x is the root, then line 2 is not executed and p [x]
= xis relurned,

(). 2. (b) Explain Binary search with suitable example and find its complexity in best, average and
worst cases. 10

Ans. Binary scarch is an extremely efficient algorithm. This search technique searches the given
item in minimum possible comparisons. To do the binary search, first we had to sort the array clements.
The logic behind this technique is given below :

(1) First find the middle element of the array.

(i) Compare the mid element with an item,

http://studentsuvidha.in/

www.studentsuvidha.in

(iii) There arc three cases.

{a) ITiL is a desired element then search is successful.

{b) If it is less than desired item then search only the first half of the array.

() If it is greater than the desired element scarch in the sccond half of the array.

Soarched in st Searched in Jnd
hall of array Mt vl half of srray
First vahut mid @ (fral + Last) /e Last Value

" Repeat the same steps until an element is found or exhaust in the search arca. In this algorithm
gvery lime we are reducing the search arca. So, number of comparisons keep on decreasing. In worst case
the number of comparison is at most log (N + 1). 50, it is an efficient algorithm when compared to linear
search bul the array has 1o be sorted before doing binary search.

Suppose we have an array a ol 7 elements,
2 3 4 5 6

D 1
[0 [12 [26 [30 | 36 [as [m |

The steps to scarch 45 using binary scarch in array a [7] are :
Step (i) : The given array is in ascending order; item to be searched for is 45.

beg = 0 Last = 6
mid = int ((beg + last)2) = int (62) = 3
beg 0O 1 2 6 last

3 4 5
[0 T 12 | 20 | 30 [3 | a5 | wn |

Step (ii) : a fmid] i.e., a [3) i5 30
30 < 45 then
beg =md +1=3+1=4
Step (iii) : mid = int ((beg + last)/2) = int (4 + 6)/2 =5
beg 4 5 6 last

| 36 | a5 | 70 |

a [mid] ie., a [5] is 45
43 = 45

Search successful ! Al location number (element number 6).

Q. 3. (a) Explain the Greedy method and Divide-and-Conquer strategy to find optimal solution to
the problem. To which type of problems they are applied. 10

Ans. The Divide and Conquer Strategy : Many usclul algorithms are recursive in structure : To solve
a given problem, they call themselves recursively one or more times to deal with closely related
sub-problems. These algorithms typically follow a divide-and-conquer approach : They break the
problem into several sub-problems that are similar to the original problem but smaller in size, solve the
sub-problems recursively and then combine these solutions Lo create a solution to the original problem.

The divide-and-congquer paradigm involves three sieps at each level of the recursion

http://studentsuvidha.in/

www.studentsuvidha.in

Divide the problem into a number of sub-problems.
Conguer the sub-problems by sobving them recursively,

If the sub-problem sizes arc small enough, however, just solve the sub-problems in a straight
forward manner.

Combine the solutions to the sub-problems into the solution for the original problem.

The Greedy Strategy : A greedy algorithm obiains an optimal solution to a problem by making a
sequence of choice, For cach decision point in the algorithm, the choice that seems best at the moment is
chosen. This heuristic strategy does not always produce an optimal solution, but as we saw in the activity
selection problem, sometimes it does,

Cienerally, we design greedy algorithms accordings o the following sequence of sleps :

(i) Cast the optimization problem as one in which we make a choice and are left with onc
sub-problem to solve,

(ii) Prove that there is always an oplimal solution to the original problem that makes the greedy
choice, so that the greedy choice is alwavs sale,

(1) Demonstrate that, having made the greedy choice, what remains is a sub-problem with the
property Lhat if we combine an optimal selution to the sub-problem with the greedy choice we have made
we arrive at an oplimal solution to the eriginal problem,

The greedy-choice properly and optimal sub-structure are the wo key ingredients, which solve a
particular oplimization problem,

Greedy-Choice Property : The first key ingredient is the greedy-choice property : A globally
optimal solution can be arrived at by making a locally optimal (greedy) choice. In other words, when we
are considering which choice to make, we make the choice that looks best in the current problem, without
considering results from sub-problems,

The greedy choiee property often gains us some efficicney in making our choice in a sub-problem,
For cxample, in the activity-selection problem, assuming that we had already sorted the activitics in
monotonically increasing order of finish limes, we needed to examine cach activity just once. Tt is
lrequently the case that by preprocessing the input or by using an appropriate data structure, we can make
greedy choices quickly, thus yiclding an cfficient algorithm.

Optimal Substructure : A problem exhibits optimal substructure if an optimal solution to the
problem contains within it optimal solution to sub-problems. This property is a key ingredicnt of assessing
the applicability of dynamic programming as well as greedy algorithms. This scheme implicitly uses
induction on the sub-problems to prove that making the greedy choice at every step produces an optimal
solution.

Q. 3. (b) How we can insert an element in Hinary Search Tree ? Write an algorithm and give
suitable example. 10

Ans, Binary Search Tree : A binary seirch tree is a binary tree which is cither empty or satisfics the
following rules :

(i) The value of the key in the lelt child or left subtree is less than the value of the root.

(ii) The value of the key in the right child or right subtrec is more than or equal to the value of the
ril.

(it} All the sub-trees of the left and right children observe the two rules,

http://studentsuvidha.in/

www.studentsuvidha.in
3/.\5
I/ \ ﬂ/ \\‘I'If.'I
\\

2

Example :

The number 7 is the root node of the binary Lr::::..EII has two sub-trees, the left subtree with node 3
and right subtrec with node 9, The value of left subtree node is lower than the value of the root and the
valuc of the right subtree node is higher than the value of the root, This attribute is scen in all the
down-below nodes to the left and right of the root.

Insertion of Nodes (Algorithm) : To inserl a new value v into a binary scarch tree T, we use the
procedure TREE _INSERT. The procedure is passed a node 2 for which key [#] = v, left [¢] = NIL and
right [z] = NIL. It modifics T and some the ficlds of # in such a way that z is inserled into an appropriate
position in the Lree.

TREE_INSERT (T, #}

1. y < NIL

2. x = rool|T|

3. While x = NIL

4, doy=x

5 il keyjz| = key fx|
B, then x = left [x]

T clse x = right [x]
B plel«y

9. ify = NIL

10 then root [T] + =
11. else if key [#] < keyly]
12. then left [v] = 2
13. clse right |y] = «

TREE_INSERT begins at the root of the tree and traces a path downward. The pointer xtraces the
path and the pointer y is maintained as the parent of x. After initialization, the while loop in lines 3-7
causes these two pointers to move down the tree, going left or right depending on the comparison of key
{#) with key [x], until x is set to NIL, The NIL occupigs the position where we wish to place the input item
#. Lines 8-13 sct the pointers that cause 2 to be inserted.

Q.4.(a) Letn = T; (Py, P2 coovere. P7) = (3, 5,20, 18, 1,6, 30) and (dy, d3 c....... dy) =(1,3,4,3,2,1,
2). What is the solution generated by Job Sequencing algorithm for the given problem ? 10

Ans. Job Sequencing : Job sequencing is the arrangements of the tasks required 1o be carried out
sequentially. There are two technigques of job sequencing :

(i) Priority Rules : Provides guidelines for the sequence in which job should be done.

http://studentsuvidha.in/

www.studentsuvidha.in

(ii) Johnson's Rules : A technique that can be used for minimize the throughput (completion) time
for a group of jobs that arc (o be processed on two machines or facilities.

Basic Assumption for Job Sequencing :

(i) Omily one job can be processed by a machine

(ii) Once the operation is started, it must be performed till completion,

(iii) An operation can start only if the previously started operation gets completed.

(iv) There is only one machine in each type.

(¥) A job is processed as soon as possible as per the ordering requirements.

(vi) Only static scheduling is considered; the processing time of all the jobs is known in prior.

{vil) The time taken Lo transfer jobs in between the machine are negligible.

Q. 4. (b) Write Primi"s algorithm to find Minimum Spanning tree of the graph with an example.

Ans. Prim’s algorithm is a special case of the generic minimum-spanning tree algorithm, Prim's
algorithm operates much like Dijkstra's algorithm for finding shortest paths in a graph. Prim’s algorithm
has the property that the edges in the set A always from a single tree.

The execution of Prim’s algorithm on the graph from figure. The root vertex is a shaded edges are
in the tree being grown and the vertices in the tree are shown in diagram.

crossing the cut is added (o the tree.

The key 1o implement Prim's algorithm efficiently is to make it casy to select a new edge to be added
to the tree formed by the edges in A. Below, the connccted graph G and the root r of the minimum
spanning tree to be grown are inputs to the algorithm, During execution of the algorithm, all vertices that

http://studentsuvidha.in/

www.studentsuvidha.in

arc not in the tree reside in a min-priority queue Q@ based on a key field. For each vertex v, key [v] is the
minimum weight of any edge connecting v 1o & verlex in the tree; by convention, key [v] = = if thereisno
such edge.

MST PRIM (G, w, r)

1 for each v € V |G]

2 do key [v] + =

3 x [u) = NIL

4. key[r] = 0

5. Q< V[g]

] While Q = ¢

7 do v = EXTRACT _MIN (Q)

8 for each v € Adj [u]

9, do if v € Q and w (u, v) < key [v]
10. thenx [v] = u

11. key [v] = w (u, v)

The total time for Prim’'s algorithm is O (Vg V + Elg V) = O (E Ig V), which is asymptotically the
same as [or implementation of Kruskal's algorithm.

Q. 5. Explain Dynamic Programming Method to solve a problem, Use the same method to solve the
travelling salesman problem with given distance—matrix : 20

0 10 15 20
50 9 10
6 13 0 12
B &2 9 0

Ans. Dynamic Programming Method : Dynamic programming, like the divide-and-conquer
method, solves problems by combining the solutions to sub-problems. Divide-and-conquer algorithms
partition the problem into independent sub-problems, solve the sub-programs recursively and then
combine their solution to solve the original problem. In contrast, dynamic programming is applicable
where the sub-problems are not independent, that is, when sub-problems share sub-problems,

A dynamic-programming algorithms solves every sub-subproblem just once and then saves its
answer in a table, thereby avoiding the work of recomputing the answer every time the sub-subproblem is
encourtered,

Dynamic programming is typically applied to oplimization problems. In such problems there can be
many possible solutions. Each solution has a value and we wish to find a solution with the optimal
{minimum or maxdmum) value.

The development of dynamic-programming algorithm can be broken into a sequence of four steps :

(i) Characterize the structure of an optimal solution.

(i} Recursively define the value of an optimal solution,

(iii) Compute the value of an optimal solution in a bottom-up fashion,

(iv) Construct an optimal solution from computed information. There are many key ingredients
that an optimaization problem must have in order for dynamic programming to be applicable : Optimal
sub-structure and overlapping sub-problems ete. /

http://studentsuvidha.in/

www.studentsuvidha.in

Optimal Sub-structure : The fiest step in solving an oplimization problem by dynamic
programming is (0 characterize the strocture of an optimal solution, In dynamic programming, we build
an optimal solution to the problem from optimal solutions (o sub-problems,

Dynamic programming uses oplimal sub-structure in a botlom-up fashion. That is, we first find
optimal solutions to sub-problems and having soived the sub-problems, we find an optimal solution to the
problem. Finding an optimal solution to the problem entails making a choice among sub-problems as 1o
which we will use in solving the problem, The cost of the problem solution is usually the sub-problem costs
plus a cost that is directly attributable o the choice itself.

Overlapping Sub-problems : The sccond ingredient that an optimization problem must have for
dynamic programming o be applicable is that the space of sub-problems must be “small” in the sense that
a recursive algorithm for the problem solves the same sub-problems over and over, rather than always
generating new sup-problem. When a recursive algorithm revisits the same problem over and over again,
we say that the optimization problem has overlapping sub-problems.

Dyvnamic-programming algorithms typically take advantage of overlapping sub-problems by solving
each sub-problem once and then storing the solution in atable where it can be worked up when needed,
using constant time per look-up,

The Travelling-Salesman Problem : In the travelling-salesman problem, which is closely related to
the Humiltonian-eyele problem, a salesman must visit n citics, Modelling the problem as a complete graph
with n vertices, we can say that the salesman wishes to make a tour or Hamiltonian cycle, visiting each city
exactly once and finishing at the city e starts from. There is an integer cost ¢fi, j) to travel from city i to city
j and the salesman wishes 1o make the tour whose total cost is minimum, where the total cost is the sum of
the individual costs along the edges of the tour,

For example :

A minimum-cost tour is (u, w, ¥, X, u), with cost 7. The formal language for the corresponding
decision problem is .
TSP = {{G,c. k): G = (V, E) is a complete graph
¢ is a function from V x V= Z,
Ke Z and
G has a travelling-salesman tour with cost at most K.
. 6. (a) Explain Branch-and-Bound strategy to solve a particular problem. 5
Ans. Branch-and-Bound : Branch-and-Bound divide a problem to be solved into a number of
sub-problems, similar to the strategy backtracking. The animation uses the travelling-salesman problem
as an ¢xample. The travelling-salesman problem comprises of finding the cheapest round path on a
weighted graph where each node is only visited once.

http://studentsuvidha.in/

www.studentsuvidha.in

Branch-and-Bound :

Basic Idea :

(1) Split the problem into sub-problems.

{Similar 1o the decision tree used in backtracking)

(ii} Constrain the possible choices according to the current best solution.

For example : If the current costs at a given node execed the current minimum costs (for
minimization) the rest of the sequence need not be caleulated.

Travelling-Salesman Problem :

Bounsd = 25

Current costs = 28

Cheapest current round trip: A-D-E-B-C-A

A B C D E

A - 20 30 10 11
B 15 - 16 2
C 4
D 3
E -

o

-
s AT -

Bound = 28
Current cost = 31 more expensive than cheapest trip
Cheapest current round trip : A-D-E-B-C-A

http://studentsuvidha.in/

www.studentsuvidha.in

Q. 6. (b) What is 0/1 Knapsack problem ? Solve this problem using Branch-and-Bound method
taking suitable example. 5

Ans. 0/1 Knapsack Problem : A thief robbing a storc finds n items; the i'™ item is worth V; dollars
and weighs w; pounds where v; and w; are integers. He wants to take as valuable a load as possible, but he
can carry at most W pounds in his knapsack for some integers W, Which items should he take ? (This is
called the /1 kanpsack problem because each [tem must either be tuken or left behind; the thief cannot
take a fractional amount of an item or take an item more than once). -

For the 0/1 problem, consider the most valuable load that weighs at most W pounds. If we remove
item j from this load, the remaining load musf be the most valuable load weighing at most W — w; that the
thief can take from the n — 1 original items excluding |,

(1 problem is not solvable by a grecdy strategy.

Branch-and-Bound is a general algorithm for finding optimal solutior of various optimization
problems, especially in discrete and combinational optimization,

For definileness, we assume that the goal is Lo find the minimum value of function f{x). Where x
renges over some set §.of admissible or candidate solutions.

A branch and bound procedure require two Lools, The first one splitting procedure that, given a set
S of candidates, returns two or more smaller set 84, 83, ... whose union cover S, Note that the minimums
of f(x) over § is min {v, v3}. Where cach Vj is the minimum of f(x) within %,. This step is called
branching, since its recursive application define a tree structure where nodes are the subscts of S.
Another tool is a procedure that computers upper and lower bounds for the minimum value of f{x) with
in a given sub-set 8. This step is called bounding,

http://studentsuvidha.in/

www.studentsuvidha.in

(. 8. (a) Write short notes on the following : 14

(i) Cook's Theorem

(ii} NP-Hard and NP-Complete Problems.

(iii) Prove that travelling salesman problem is NP-Hard, &

Ans. (i) Cook's Theorem (Satisfiability is NP-Complete) :

Theorem : Satishfability of Boolean formulas is NP-complete,

Proaf : We start by arguing that SAT € NF. Then we prove that CIRCUIT _SAT is NP-hard by
showing that CIRCUIT_SAT = SAT;

Tir show that SAT belongs to NF, we show that a certificate consisting of a satisfying assignment for
an input formula ¢ can be verified in polynomial time. The verilying algorithm simply replaces each
viriable in the formuls with its corresponding value and then evaluates the expression.

SATEP=P=NP OR

I SATEFP=PF=NP OR

For every problem

xENPxaSAT OR
SAT € NPC

It can be shown that

(i} Graph colouring € NP

(11) SAT o colouring

= (iraph colouring ENPC

Similarly, K - clique, HC, TSP etc. are also NPC,

(ii) NP-Hard and NP-Complete : Polynomial-time reductions provide a formal mcans for showing
that one problem is at least as hard as another, to within a polynomial-time factor. That is, if L; = pla,
then Ly is not more than a polynomial factor harder than Ly, which is why the “less than or equal to”

notation for reduclion is maemonic,

http://studentsuvidha.in/

www.studentsuvidha.in

A language LC {0, 1}* is NP-Complete if,

(i L € NP and

(i) L' = pLforeveryL € NP

If a language L satisfies property 2, but not necessarily property 1, we say that L is NP-hard.

The Circuit-satisfiabllity Problem Is NP-hard : Let L be any language in NF. Polynomial-ime
algorithm F computing a reduction function ‘" that maps every bma:y string x 1o a circuit C = f(x}, such
that x € L if only if C € CIRCUIT-SAT.

Since L € NP, there most exist an algorithm A that verifies L in polynomial time. The algorithm F
that we shall construct will use the two input algorithm A to compute the reduction function.

The basic idea of the proof is to represent the computation of A as a sequence of configurations, As
shown in figure, cach configuration can be broken into parts consisting of the program for A, the program
counter and auxiliary machine state, the input x, the certificate y and working storage. Starting with an
initial configuration Cy, cach configuration C; is mapped to a subsequent configuration C;; by the
combinational circuit M implementing the computer hardware. The output of the algorithm A -0to1-
is wrilten to some designed location in the working storage when A finishes executing and if we assume
that thereafter A halts, the value never changes. Thus, if the algorithm runs for al most T{n) steps, the
output appear as onc of the bits in Cp(n).

A |m;]_uxmm[x | ¥ | working storage |

—i

g,[ﬁimimm—.mlx | v | working storsge |

T\ I/
S [™

.;ﬂl:}f_:%w:m/u[n[\’r [working siorage |

Ol Output
NP-Complete Problem (The Cligue Problem) : A clique is an undirected graph G - (V, E) is a
subset V' C V of vertices, each pair of which is connected by an edge in E. In other words, a clique is a

http://studentsuvidha.in/

www.studentsuvidha.in

complete sub-graph of G. The size of a clique is the number of vertices it contains. The clique problem is
the optimization problem of finding a clique of maximum sizc in a graph,

The formal defimition is
' CLIQUE = | <G, K> : Gis agraph with a clique of stze K},

(iii) To prove that TSP is NF-hard, we show that HAM-CYCLE = TSP, Lat G = (M E) be an
instance of HAM-CYCLE. We construct an instance of TSP as follows, We form the complete graph
G = (VE),

Where, E' = {(i,}):i,] € Vandi # j} and we definc the cost function C by

oo 0 if (1)) €E
CaD=11 i E.ﬁ EE

The instance of TSPis then (G, C, (), which is easily lormed in polynomial time.

We now show that graph G has a Hamiltonian cycle if and only if graph G has a tour of cost at most
(1. Suppose that graph G has a Hamiltonian cycle h. Each cdge in h belongs 10 E and thus has cost 0 in
G'. Thus, h is a tour in G’ with cost 0. Conversely, suppose that graph G has a tour b’ of cost at most 0.
Since, the costs of the edges in E' are 0 and 1, the cost of tour b’ is exactly 0 and each edge on the tour must
have cost 0, Therefore, h' contains only cdges in E, we conclude that h' is a Hamiltonian eyele in graph G.

http://studentsuvidha.in/

