\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI • EXAMINATION - WINTER 2013

Subject Code: 160602
 Subject Name: Applied Fluid Mechanics Time: 02:30 pm to 05:00 pm Instructions:
 1. Attempt all questions.
 2. Make suitable assumptions wherever necessary.
 3. Figures to the right indicate full marks.

Date: 29-11-2013
Q. 1 (a) Draw sketches to explain the development of boundary layer along a flat 07 plate. Enlist the factors affecting establishment length
(b) Explain the displacement and the momentum thickness $\mathbf{0 7}$
Q. 2 (a) Explain the separation of boundary layer and ill effects and explain how it 07 can be controlled
(b) Write the governing equation for drawing the gradually varied flow profiles. With the help of this equation draw $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} type of profiles and give examples where they occur in reality.

OR

(b) Write the procedure for locating the hydraulic jump below a sluice gate on a mild slope which exists on the down stream side for a long reach of the channel.
Q. 3 (a) For a laminar flow ff an oil having dynamic viscosity $\mu=1.766$ Pa.s in a 0.3 metre diametyr pipe the velocity distribution is parabolic with a maximum poigt welocity $3 \mathrm{~m} / \mathrm{s}$ at the centre of the pipe. Calculate the shear stress at 60 (t, 90 mm from the pipe wall.
(b) Give the cof dimensional analysis in presenting experimental data and in mon investigation.

OR

Q. 3 (a) A smooth wrought iron pipe 0.2 metre in diameter carries crude oil at a velocity of $2.5 \mathrm{~m} / \mathrm{s}$. Find the loss of head per 100 metre and the power required to maintain the flow Take kinematic viscosity as 0.4 stokes and specific gravity as 0.90 .
(b) Give the merits and limitations of distorted models.
Q. 4 (a) Derive the expression for Reynolds shear stress in a turbulent flow field by use of Prandtl mixing length theory and state its utility.
(b) Define lift and drag. Enlist and explain the parameters on which the lift and drag forces will depend for a body placed in a flow field

OR

Q. 4 (a) By the use method of dimensional analysis obtain an expression for 07 critical depth y_{c} in a triangular channel, the critical depth depends upon discharge Q, acceleration due to gravity and angle of channel θ
(b) Give the significance of specific speed and unit speed of turbine. Define and give examples of impulse and reaction turbines.
Q. 5 (a) Distinguish between rapidly varied and gradually varied flow, steady uniform and unsteady uniform flow. Give examples of each.
(b) Air flows over a plate 1 metre long at velocity of $6 \mathrm{~m} / \mathrm{s}$ Determine the total drag per unit length on the sides of the plates. Take mass density of air as $1.226 \mathrm{~kg} / \mathrm{m}^{3}$ and kinematic viscosity as $0.15 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$

OR
Q. 5 (a) Discuss the variation of velocity along a vertical for turbulent flow in a rigid bed open channel
(b) A Francis turbine of 1 metre runner diameter working under a head of 5 metres at a speed of 205 rpm develops 75 kW when the rate of flow of water is $1.8 \mathrm{~m}^{3} / \mathrm{s}$. If the head on the turbine is increased to 15 metre determine the new speed, discharge and power.

