\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION - SUMMER • 2014

Subject Code: 140603
Date: 23-06-2014
Subject Name: Structural Analysis - IITime: 10.30 am - 01.00 pmInstructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i)State and explain Muller Breslau Principal. 07
(ii) Advantages and Disadvantages of Indeterminate Structures.(b) Find the fixed end moments if one of the supports of fixed beam settles by δ.07
Q. 2 (a) A Fixed Beam of 7 m span carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ from 07 left end for 3 m . Analyze the beam and draw Bending Moment Diagram (BMD) showing important values.
(b) Determine redundant reaction B using method of consistent deformation for OR(b) Find the slope and deflection of free end of a cantilever beam carrying a uniformly07distributed load over the entire span.
Q. 3 (a) Analyze the portal frame ABC shown in Fig. 2 and draw Bending Moment 07 Diagram (BMD) by Slope and Deflection Method.
(b) Determine the support moments and draw BMD for the beam shown in Fig. 3 by 07 Moment DistributichMethod.
OR
Q. 3 (a) A beam AB ofaniform section of span 9 m and constant $\mathrm{EI}=3.6 \times 10^{4} \mathrm{Nm}^{2}$ is 07 partially fired at ends when the beam carries a point load of 90 kN at distance of 3 m frof .ne left end A . The following displacements were observed.
(i) rotation at $\mathrm{A}=0,01 \mathrm{rad}$ (clockwise) and settlement at $\mathrm{A}=20 \mathrm{~mm}$
(ii) rotation at $\mathrm{B}=0.0075 \mathrm{rad}$ (anticlockwise) and settlement at $\mathrm{B}=15 \mathrm{~mm}$ Analyze using Slope Deflection Method.
(b) Analyze the Portal frame shown in fig.4. by Moment Distribution Method and 07 draw B.M. Diagram and S.F. Diagram.
Q. 4 (a) Calculate vertical deflection of the joint C of the pin - jointed plane frame shown 07
in Fig. 9 by Energy Principle Method. The cross section area of AB, AC and BC are same. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(b) Find the support moments of the frame shown in fig. 5 by Kani's Method, EI is 07constant.
OR
Q. 4 (a) Explain Castigliano's First and second theorems. 07
(b) Determine the Support moments for the continuous beam shown in fig, 6 by Kani's Method.
Q. 5 (a) What does an Influence Line Diagram indicate? What are the characteristics for 07 ILD of an indeterminate structure
(b) Draw Qualitative I.L.D.(fig.7) for07$\begin{array}{ll}\text { (i) } & \text { Three Span Continuous Beam (ILD for } V a, V b, V c, V d, M x, V x) \\ \text { (ii) } & \text { Three Storey Building Frame.(BM x-x,BM y-y, SF x-x, SF y-y) }\end{array}$
Q. 5 (a) A Concrete beam of symmetrically I - Section spanning 8 m has flange width and thickness of 200 mm and 60 mm respectively. The overall depth of the beam is 400 mm . The thickness of web is 80 mm . The beam is pres stressed by a parabolic cable with an eccentricity of 120 mm at centre and zero at the supports with an effective force of 150 KN . The L.L. on beam is $3 \mathrm{kN} / \mathrm{m}$. Draw the stress distribution diagram at the centre section for :
(i) Prestress + Self Wt.
(b) Draw I.L.D. for $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ for a Beam shown in fig.8.

fig 1 (Q.2(b))

fig. 4 (Q.3(b (or))

fig. $5(c, 4(b))$

fig. 7 (ii)
fig. $8(Q .5(b) 02)$

fig. $9(Q .4(a))$
