\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION - WINTER • 2014

Subject Code: 140601

Date: 22-12-2014

Subject Name: Advanced Surveying

Time: 02:30 pm - 05:00 pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) What are the purposes of tacheometic surveying?

03

(b) Explain stadia method of techeometry. 04
(c) The following observations were made using a tacheometer fitted with an anallatic lens, the multiplying constant being 100 and additive constant is 0 and the staff held vertically

Inst. Station.	Height of Inst.	Staff station	WCB	Vertical angle	Hair readings	Remarks
O	1.550	A	$30^{\circ} 30^{\prime}$	$4^{\circ} 30^{\prime}$	$1.155,1.755,2.355$	RL of O
	B	$75^{\circ} 30^{\prime}$	$10^{\circ} 15^{\prime}$	$1.250,2.000,2.750$	150.00	

Calculate the distance AB and the RLs of A and B. Find also the gradient of the line AB .
Q. 2 (a) What is triangulation? Explain principle of triangulation.
(b) Explain with sketches /ifferent triangulation figures. 07

OR

(b) What is satellited ation? Discuss the method of reduction of horizontal angle to center.
Q. 3 (a) Define: D^{\prime} rect obseryation, conditioned quantity, true valve, true error, most probahd error, residual error, and observed equation.
(b) Two triangulation stations A and B are 50 kilometers apart and have elevations 235 m and 250 m respectively. Find the minimum height of signal required at B so that the line of sight may not pass near the ground 3 meters. The intervening ground may be assumed to have uniform elevation of 200 meters.

OR

Q. 3 (a) What is weight of a quantity? Discuss various laws of weights. 07
(b) Adjust the following angles closing the horizon: 07

$$
\begin{array}{ll}
\mathrm{A}=112^{\circ} 20^{\prime} 47^{\prime \prime} & \text { wt. } 2 \\
\mathrm{~B}=90^{\circ} 30^{\prime} 15^{\prime \prime} & \text { wt. } 3 \\
\mathrm{C}=58^{\circ} 12^{\prime} 05^{\prime \prime} & \text { wt. } 1 \\
\mathrm{D}=98^{\circ} 57^{\prime} 01^{\prime \prime} & \text { wt. } 4
\end{array}
$$

Q. 4 (a) Define: Zenith, nadir, horizon, prime vertical, celestial poles, vertical circle, and 07
ecliptic.
(b) Prove that altitude of pole is equal to latitude of observer. 07
OR
Q. 4 (a) Explain the scale of vertical photographs. 07
(b) Calculate height of microwave tower appearing in a vertical photograph. The distance of the tower in photograph from principal point is 6.03 cm and relief displacement measured is 0.603 cm . the datum scale of photo is $\frac{1}{11000}$ and the
focal distance of camera $\mathrm{f}=20 \mathrm{~cm}$.
Q. 5 (a) Explain components of remote sensing. 07
(b) Explain the interaction of EM energy with earth surface features. $\mathbf{0 7}$
OR
Q. 5 (a) Define GIS. Explain the objectives of GIS. 07
(b) Discuss the application of GIS in civil engineering discipline.

