Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-III Examination-Dec.-2011

Subject code: 130604 Subject Name: Structural Analysis-I Time: 2.30 pm -5.00 pm Instructions: Date: 24/12/2011

Total marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) A shaft has to transmit 105 kW power at 160rpm. If the shear stress is not to 07 exceed 65 N/mm² & the twist in a length of 3.5m must not to exceed 1°. Find suitable diameter. Take $G=8 \times 10^4$ N/mm².
 - (b) A 100mm diameter shaft transmits 105kw power at 120rpm. A flanged coupling 07 is keyed to the shaft, the key being 25mm wide & 140mm long. Six bolts of 20mm dia. are symmetrically arranged along a bolt circle of 280mm dia. Find the shear stress induced in the shaft, the key & bolts.
- Q.2 (a) An unknown weight falls by 30mm on to a collar rigidly attached to the lower 07 end of a vertical bar 4m long & 1000mm^2 in section. If the max^m instantaneous extension is found to be 3.66mm. Find the corresponding stress & the value of the unknown weight. Take $\text{E}=2x10^5 \text{ N/mm}^2$.
 - (b) (1) State the Maxwell Reciprocal theorems.
 (2) Define proof restrience, Modulus of resilience & Core of section. OR
 - (b) A thin seamlest spherical shell of 1.5m dia. is 8mm thick. It is filled with a 07 liquid, so that the internal pressure is $1.5N/mm^2$. Determine the increase in diameter & capacity of the shell. Take E=2x10⁵ Mpa & 1/m=0.3.
- Q.3 (a) A three hinged parabolic arch has a span 20m & central rise 3m. It carries a 07 point load of 10kN at 7.5m from the left hinge. Calculate normal thrust, shear & B.M at a section 7.5m from right end hinge. Also calculate max +ve B.M & it's position. Draw B.M diagram.
 - (b) A cable loaded with 10kN/m is stretched between two supports in the same 07 horizontal line 200m apart. If the central dip is 15m. Find the max^m & min^m pulls in the cable.

OR

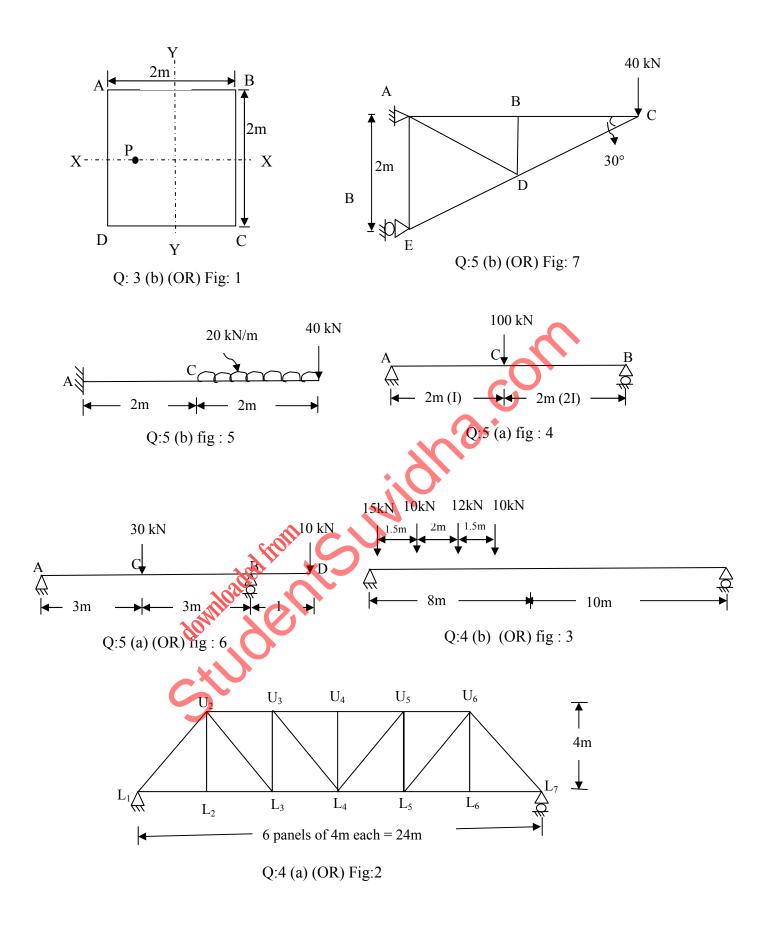
Q.3 (a) A cylindrical chimney 25m high of uniform circular section is 5m external dia. 07 & 2m internal dia. It is subjected to a horizontal wind pressure of 1400N/mm². If the coefficient of wind pressure is 0.6 & unit wt. of masonry is 22kN/m³. Find the max^m &min^m stresses at the base of the section.

Download all NOTES and PAPERS at StudentSuvidha.com

07

- (b) A concrete block has the cross-section as shown in fig 1. The block weighs 07 90kN & a vertical downward load of 20kN at P on the axis XX but eccentric about YY axis. Calculate the distance of the point P from the axis YY, if the pressure under the block along the edge AD is just twice the pressure under the edge BC & determine these pressures.
- Two wheel loads of 16kN& 8kN, at a fixed distance apart of 2m, cross a beam 07 Q.4 (a) of 10m span. Draw the influence line for B.M & S.F for a point 4m from the left abutment & find the max^m B.M & S.F at that point.
 - A simply supported beam AB has a span of 8m.Draw influence lines for R_A, 07 (b) R_B,V_X & M_X for a section 3m from left end support.

OR


- Q.4 (a) Draw IL diagram for forces in the members U_2U_3 , L_1L_2 , U_3L_3 , U_2L_3 & L_1U_2 of a 07 Pratt Truss as shown in fig 2.
 - (b) A train of loads as shown in fig 3 crosses a simply supported girder of span18m 07 from left to right. Calculate max^m SF& BM at section 8m from left.
- A simply supported beam of span 4m is carrying a point load of 100kN at it's Q.5 (a) 07 mid span as shown in fig 4. Find slopes at supports & deflection at mid span. Take E=200 GPa, I= $24 \times 10^{6} \text{ mm}^{4}$.
 - (b) Calculate Φ_B and Y_B for a cantilever beam loaded as shown in fig 5. Take 07 $E=200 \text{ GPa } \& I = 5 \times 10^8 \text{ mm}^4.$

OR

- (a) Determine slopes at A & D and deflections at C & D for the overhanging beam Q.5 07 loaded as shown in fig 6. Take E=200 GPa & $I = 2 \times 10^7$ mm⁴. Using Conjugate beam Method.
 - (b) Find the vertical & horizontal deflections of the joint C of the Truss loaded as 07 townloaded sch 125 shown in fig 7. The c/s areas of members CD & DE are each 2500mm² & those of other members are sach 1250mm² Take E=200 GPa.

Download all NOTES and PAPERS at StudentSuvidha.com

Download all NOTES and PAPERS at StudentSuvidha.com