Seat No.:	Enrolment No
	LOGICAL UNIVERSITY AMINATION – SUMMER 2013
Subject Code: 130602	Date: 29-05-2013
Subject Name: Fluid Mechanics Time: 02.30 pm - 05.00 pm Instructions:	Total Marks: 70
 Attempt all questions. Make suitable assumptions wherever Figures to the right indicate full mark 	•
of 0.4 m. Find the pressure at (i) the interface (ii) a (c) Velocity distribution in a viscous flow ove velocity in m/sec. at distance y from the plate. If c shear stress at y=0 and y=2m. (d) An open cylindrical tank 1 m diameter and	r a plate is given by $u=4y-y^2$ for $y \le 2m$. Where u is
end B5 m below water surface is installed to control Find the force F applied normal to the gate at B to (b) (i) Sketch the stability of a floating body. (ii) A uniform rectangular body 2 m long 1 immersion being 0.6 m. Find (i) the weigth of the	open the gate. [6] [3] In wide and 0.8 m deep floats in water, the depth of body and (ii) check the stability [5] OR Inter gauge and vacuum pressure with a sketch. [3]
made and principle involved. (b) In a 3-D incompressible flow the velocity and $v = 2y^2 + z^2$ -6. Find the velocity component (c) Show that 2-D flow described by $u = 6xy$	pressible flow in Cartesian form stating the assumption [5] component in x and y directions are $u = x^2 + 2z^2 + 8$ w in z- direction. [5], $v = 3x^2 - 3y^2$ is continuous and irrotational. [4] OR
 Q: 3 (a) Distinguish between: (i) Local acceleration and convective acceleration (ii) Steady, unsteady, uniform and non united (iii) Rotational and irrotational flow (iv) Metacentre and metacentric height (v) Stream line and stream tube (b) A 2-D flow is described by u = 5x³ and v stream line ψ = 1. (c) Show that ψ- line and Φ – line intersect of the convergence of the con	iform flow $= -15 x^2$ y. Evaluate the stream function and sketch the [5]
in it.	<u> -</u>

(c) Write down the devices used to measure (i) pressure (ii) velocity and (iii) discharge i	
carrying flow of water.	[3]
OR	
Q:4 (a) State and Prove Euler's equation of motion of a fluid element along a stream line stating principle used. (b) A 400 m long pipe tapers uniformly from 1.2 m diameter at high end to 0.6 m diameter lower end, the slope of the pipe being 1 in 100 falling. The pipe conveys a discharge of 1.25 cu. the pressure at the high end is 75 K pa. find the pressure at the lower end. Ignore losses. (c) The velocity components in a 2-D flow of an incompressible flow are given by u = 5x ³ -15x ³ y, find the acceleration at (1,2) at t = 1.	[5] at the m/sec if [5]
Q:5 (a) An oil of specific gravity 0.8 is flowing through a venturimeter having inlet diameter o	f 150
mm and throat diameter of 75 mm. The oil mercury manometer shows a reading of 20 cm. Comp	oute the
discharge of oil. Take $C_d = 0.8$ Draw the hydraulic gradient lint for the venturimeter.	[5]
(b) Classify briefly different types of notches and weirs.	[4]
(c) Water flows over a rectangular weir 1 m wide at a depth of 150 mm and afterwards pass	ses
through a triangular right angled weir. Taking C _d for rectangular and triangular weir as 0.62 and	0.59
respectively. Find the depth over the triangular weir.	[5]
OR	
Q: 5 (a) Derive Darcey weisbatch equation for loss of head due to friction in a pipe line.	[4]
(b) Explain (i) Total Pressure and resultant pressure (ii) Specific mass and specific weight	[5]
(c) (i) Distinguish between: (A) compressible and incompressible flow	
(B) isothermal process and adiabatic process	[2]
(ii) For a perfect gas, equation of state is PV = RT with the usual terms. Get the different	
(ii) For a perfect gas, equation of state is PV = RT with the usual terms. Get the different equation. ******* ******** ****************	[3]