\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-III • EXAMINATION - SUMMER 2013

Subject Code: 130602

Subject Name: Fluid Mechanics
Time: $\mathbf{0 2 . 3 0} \mathbf{~ p m} \mathbf{- 0 5 . 0 0} \mathbf{~ p m}$
Date: 29-05-2013
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q:1 (a) Define 'Fluid' and State its properties.
(b) An open tank contains 1 m of water, above which there is an oil of specific gravity 0.8 to a depth of 0.4 m . Find the pressure at (i) the interface (ii) at the bottom of the tank.
(c) Velocity distribution in a viscous flow over a plate is given by $u=4 y-y^{2}$ for $y \leq 2 m$. Where u is velocity in $\mathrm{m} / \mathrm{sec}$. at distance y from the plate. If coefficient of viscosity is 15 Pa . s. determine the shear stress at $\mathrm{y}=0$ and $\mathrm{y}=2 \mathrm{~m}$.
(d) An open cylindrical tank 1 m diameter and 2 m high contains water up to a depth of 1.5 m . If the cylinder rotates about its vertical axis, what maximum angular velocity can be attained without water in the tank to spil ?

Q: 2 (a) An inclined rectangular sluice gate $A B 1.20 \mathrm{~m}$ and 5 m wide at 45 degree to water surface with end B 5 m below water surface is installed to control the flow of water. Upper end A of gate is hinged. Find the force F applied normal to the gate at B to open the gate.
(b) (i) Sketch the stability of a floating body.
(ii) A uniform rectangular body 2 m long 1 m wide and 0.8 m deep floats in water, the depth of immersion being 0.6 m . Find (i) the ceigth of the body and (ii) check the stability
(b) (i) Describe the terms mospheric, absolute, gauge and vacuum pressure with a sketch. [3]
(ii) Differentiate bet een Liquid and gases

Q: 3 (a) Derive conting ity equation for 2-D incompressible flow in Cartesian form stating the assumption made and principle involved.
(b) In a 3-D incompressible flow the velocity component in x and y directions are $u=x^{2}+2 z^{2}+8$ and $v=2 y^{2}+z^{2}-6$ Find the velocity component w in z - direction.
(c) Show that 2-D flow described by $u=6 x y, v=3 x^{2}-3 y^{2}$ is continuous and irrotational. [4] OR
Q:3 (a) Distinguish between :
(i) Local acceleration and convective acceleration
(ii) Steady, unsteady, uniform and non uniform flow
(iii) Rotational and irrotational flow
(iv) Metacentre and metacentric height
(v) Stream line and stream tube
(b) A 2-D flow is described by $u=5 x^{3}$ and $v=-15 x^{2} y$. Evaluate the stream function and sketch the stream line $\psi=1$.
(c) Show that ψ - line and Φ - line intersect orthogonally.
$\mathrm{Q}: 4$ (a) classify different types of orifices and write down the equations for hydrantic coefficients used in it.
(b) A tank has two identical orifices in one of its vertical sides. The upper orifice is 1 m below the water surface and lower one is 2 m below the water surface. Find the point at which the two jets will intersect if co efficient of velocity is 0.9 . The flow being as constant head.
(c) Write down the devices used to measure (i) pressure (ii) velocity and (iii) discharge in a pipe carrying flow of water.

Q :4 (a) State and Prove Euler's equation of motion of a fluid element along a stream line stating the principle used.
(b) A 400 m long pipe tapers uniformly from 1.2 m diameter at high end to 0.6 m diameter at the lower end, the slope of the pipe being 1 in 100 falling. The pipe conveys a discharge of $1.25 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$ if the pressure at the high end is 75 K pa. find the pressure at the lower end. Ignore losses.
(c) The velocity components in a 2-D flow of an incompressible flow are given by $u=5 x^{3}$ and $v=$ $-15 x^{3} y$, find the acceleration at $(1,2)$ at $t=1$.

Q : 5 (a) An oil of specific gravity 0.8 is flowing through a venturimeter having inlet diameter of 150 mm and throat diameter of 75 mm . The oil mercury manometer shows a reading of 20 cm . Compute the discharge of oil. Take $\mathrm{C}_{\mathrm{d}}=0.8$ Draw the hydraulic gradient lint for the venturimeter.
(b) Classify briefly different types of notches and weirs.
(c) Water flows over a rectangular weir 1 m wide at a depth of 150 mm and afterwards passes through a triangular right angled weir. Taking C_{d} for rectangular and triangular weir as 0.62 and 0.59 respectively. Find the depth over the triangular weir.

Q : 5 (a) Derive Darcey weisbatch equation for loss of head due to friction in a pipe line.
(b) Explain (i) Total Pressure and resultant pressure (ii) Specific mass and specific weight
(c) (i) Distinguish between: (A) compressible and incompressible flow
(B) isothermal process and adiabatic process
(ii) For a perfect gas, equation of state is $\mathrm{PV}=\mathrm{RT}$ with the usual terms. Get the differential equation.

