\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-III • EXAMINATION - WINTER 2013

Subject Code: 130602
Date: 30-11-2013

Subject Name: Fluid Mechanics

Time: $\mathbf{0 2 . 3 0} \mathbf{~ p m} \mathbf{- 0 5 . 0 0} \mathbf{~ p m}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Draw neat sketch where ever necessary.
Q. 1 (a) Enlist the properties of fluid and explain any three of them in detail.
(b) Determine the dynamic viscosity of an oil used for lubrication between a plate 1.0 m X 0.4 m and an inclined plane inclined at 30°. The weight of plate is 600 N and it slide down the inclined plane with a uniform velocity of $0.35 \mathrm{~m} / \mathrm{sec}$. Thickness of oil film is 2 mm .
Q. 2 (a) Define atmospheric pressure. Enlist different types of pressure and explain how atmospheric pressure is measured by various devices.
(b) The pressure intensity at a point in a fluid is given $5 \mathrm{~N} / \mathrm{cm}^{2}$. Find the corresponding height of fluid when fluid is (i) water (ii) oil of sp. Gravity $=0.80$ and (iii) kerosene of sp. Gravity $=0.74$

OR

(b) A trapezoidal channel 2 m wide at the bottom is a 1.5 m deep has slide slopes $1: 1$. Determine total pressure and centre of pressure on a vertical gate of channel when it is full of water.
Q. 3 (a) What is metacentre xplain how metacentric height is determined analytically.
(b) State the Archimgaes principle and determine the density of a metallic body which floats at 6 interface of mercury and water. The sp. Gravity of mercury is $13.6 \mathrm{gm} / \mathrm{cm}^{3}{ }^{3}$ 'rime body floats at the interface such that 40% of its volume is submersed in mercury and 60% in water.

OR

Q. 3 (a) A rectangular open tank $3 \mathrm{~m} \times 2 \mathrm{~m} \times 1.5 \mathrm{~m}$ deep is filled with oil of sp . Weight of $85 \mathrm{kN} / \mathrm{m}^{3}$ up to depth of 1.0 m . Find the force acting on side of tank when
(i) Tank moves upward with acceleration $=\mathrm{g} / 2$
(ii) Tank moves downward with acceleration $=\mathrm{g} / 4$
(iii) Tank moves downward with acceleration $=\mathrm{g}$
(b) Explain with sketch stable, unstable and neutral equilibrium of floating body. $\mathbf{0 7}$
Q. 4 (a) Derive the continuity equation
$\partial u / \partial x+\partial v / \partial y+\partial w / \partial z=0$ in three dimension.
(b) Write characteristics of flow net, uses of flow net and limitations of flow net.

OR

Q. 4 (a) State the Bernoulli's equation and write the assumption made in it.
(b) The top and bottom dimensions of 3 m long vertical pipe are 10 cm and 5 cm respectively. Water flows down the pipe at $40 \mathrm{lit} / \mathrm{sec}$. Calculate the pressure difference between two ends of pipe.
Q. 5 (a) A pipe 25 cm in diameter and 60 m long conveys water at a velocity of $3 \mathrm{~m} / \mathrm{sec}$.
Calculate the head loss in friction using (i) Darcy - wesbach formula and (ii)
Chezy's formula. Take $\mathrm{f}=0.006$ and $\mathrm{C}=55$.
(b) Explain with sketch the Hydraulic grade line, Total energy line and Equivalent pipe.

OR
Q. 5 (a) Classify different types of orifices according to its size, shape, discharge 07 condition and shape of edge. Explain each in brief.
(b) Define Notch and Weir and find the Constant of notch for a right angled 07 triangular notch with $60 \mathrm{lit} / \mathrm{min}$ discharge. The head of sill measured was 60 mm

