GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-1 $\mathbf{1}^{\text {st }} / \mathbf{2}^{\text {nd }} \cdot$ EXAMINATION - SUMMER 2013

Subject Code: 110010
Subject Name: Mechanics of Solids
Time: 02:30 pm - 05:00 pm

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Date: 19-06-2013

Total Marks: 70
Q. 1 (a) Define: (i) Space (ii) Particle (iii) Equilibrant 03
(b) Locate the centroid of composite line ABCD as shown in figure 1. 04
(c) A cord supported at A and B carries a load of 20 kN at D and a load of W at 07
C as shown in figure 2. Find the value of W so that CD remains horizontal.
Q. 2 (a) State: (i) Law of Parallelogram of Forces (ii) Law of Triangle of Forces 03
(b) A wooden beam 2 m long, simply supported at ends, has rectangular section 04$150 \mathrm{~mm} \times 600 \mathrm{~mm}$ and carries a point load of 20 kN at center of the beam.Calculate the bending stress at a layer 200 mm above the bottom of thebeam, the layer being of the section distant 0.8 m from left support.
(c) Find forces in members CD, FG and FD. The truss is shown in figure 3.07
Q. 3 (a) Enlist various type of loads and type of supports. 03
(b) A beam of rectangular section $100 \mathrm{~mm} \times 300 \mathrm{~mm}$ is subjected to a shear 04force of 10 kN . Find shear stress at the top layer, at neutral layer and theaverage value of shear stress. Show the stress distribution diagram.
(c) Some forces are acting on a rigid body as shown in figure 4. Find the 07 resultant of the giyen force system, in terms of magnitude and direction. Find the location © the Resultant with respect to point O.
Q. 4 (a) Distinguish ${ }^{\text {gigween }}$ perfect, unstable and redundant trusses. Illustrate with 03sketches
(b) Find refution at support A and B for the beam shown in figure 5. 04
(c) Call giate shear force and bending moment at salient points of the beam 07 shown in figure 6. Draw shear force diagram and bending moment diagram for the beam.
Q. 5 (a) State Pappus-Guldinus first theorem and prove it. 03
(b) A force is acting at an angle of 45°. Find the components along the axes 04 $\mathrm{m}-\mathrm{m}$ and $\mathrm{n}-\mathrm{n}$ as shown in figure 7.
(c) Find the moment of inertia of the area about $x-x$ axis as shown in figure 8. 07 07
Q. 6 (a) Define: (i) Coefficient of friction (ii) Angle of friction (iii) Stress 03
(b) Refer figure 9. The coefficient of frictions between the block and the 04inclined plane is 0.2 . Determine the least value of the force P required just tomove the block up along the inclined plane.
(c) A steel rod of 30 mm diameter is placed inside a copper tube of external diameter 50 mm and internal diameter 40 mm , having length equal to 500 mm and connected rigidly at the ends as shown in figure 10. The bar is subjected to axial pull of 150 kN . Find the stresses in each material and elongation of the composite bar. Take $\mathrm{E}_{\text {steel }}=200 \mathrm{GPa}$ and $\mathrm{E}_{\text {copper }}=100 \mathrm{GPa}$.
Q. 7 (a) A uniform ladder of weight 250 N and length 5 m is placed against a vertical wall in a position where its inclination to the vertical is 30°. A person weighing 700 N climbs the ladder. At what position of the person the ladder
will start to slip? Take coefficient of friction $\mu=0.2$ at both the contact surfaces of the ladder.
(b) For the state of stress as shown in figure 11 determine location of principal planes, principal stresses and maximum shear stress.

Fig. 1 [Q-1(b)]

Fig. 3 [Q-2(c)]

Fig. 5 [Q-4(b)]

Fig. 2 [Q-1(c)]

Fig. 4 [Q-3(c)]

Fig. 6 [Q-4(c)]

Fig. 7 [Q-5(b)]

Fig. 9 [Q-6(b)]

Fig. 11 [Q-7(b)]

