\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- $\mathbf{1}^{\text {st }} / \mathbf{2}^{\text {nd }} \cdot$ EXAMINATION - WINTER 2013

Subject Code: $\mathbf{1 1 0 0 1 0}$
Date: 31-12-2013
Subject Name: Mechanics of Solids
Time: 10:30 am - 01:00 pm
Instructions:
Total Marks: 70

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Fill in the blanks with most appropriate word/words.
4. Beam extends beyond the support then that beam is known as \qquad beam.
5. Moment of inertia of any plane area is maximum about an axis passing though \qquad .
6. Every joint of plane truss is having \qquad force system and system of forces is in equilibrium.
7. Deficient truss has members (N) (2j-3)
8. At free end of a cantilever bending moment is always \qquad unless a concentrated moment is applied at the free end.
9. \qquad of a force is the procedure of splitting a force into number of components.
10. \qquad is equal and opposite to the resultant of several forces, fating on a body.
11. Forch driction is to the applied force, which tends to diuve the body.
(b) A stec (\%ember ABCD with three different circular cross-section and lengho as follows, is subjected to an axial pull of 150 kN . Compute tri, net change in the length of the member if the modulus of elasticity $(E)=200 \mathrm{GPa}$.

- $A B$; diameter $=40 \mathrm{~mm}$ and length $=750 \mathrm{~mm}$

BC : diameter $=25 \mathrm{~mm}$ and length $=1000 \mathrm{~mm}$
CD: diameter=30mm and length $=1200 \mathrm{~mm}$
Q. 2 (a) The following forces are acting at a point, find the magnitude and direction of the resultant force.

1. 550 N acting towards North
2. 900 N acting at 40° towards South of West
3. 1.25 kN acting at 60° towards South of East
4. 400 N acting from West to East
(b) A cement concrete block having a shape of square cross section of 250 mm side and a uniform height of 350 mm is tested in a compression testing machine by applying an axial compressive load of ' P '. It was observed that the height decreased by 0.28 mm and the side increased by 0.035 mm . If the Modulus of Elasticity of concrete is $0.13 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine

- Poison's Ratio
- The value of ' P '
- The volumetric strain of the block.
(c) A steel rail is 10 m long and is laid at a temperature of $20^{\circ} \mathrm{C}$. The maximum temperature expected is $50^{\circ} \mathrm{C}$, estimate the minimum gap between two rails to be left so that temperature stresses do not developed. The coefficient of linear expansion $\alpha_{\text {stee }}=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ per unit length.
Q. 3 (a) Determine support reactions for the beam loaded as shown in fig.1.
(b) Find the angle of tilt ' θ ' with horizontal so that the contact force (Reaction) at ' B ' will be one-half at ' A ' for a smooth cylinder of weight 100N. Refer fig.2.
Q. 4 (a) Determine the resultant and locate the same with respect to point ' A ' of a non-concurrent force system shown in fig.3.
(b) Find out forces in all the members of a truss shown in fig. 4.
Q. 5 (a) Determine the centroid of the shaded area shown in fig.5. Also calculate the volume of the article generated by revolving the area about vertical axis 'AB'.
(b) Calculate the Moment of inertia of the shaded area shown in fig. 5 about the vertical axis 'AB'.
Q. 6 (a) Draw Shear force and bending moment diagrams showing all 08 necessary calculations for the beam loaded as show in fig. 6.
(b) A uniform ladder, of length 5 m , is supported by a horizontal floor at ' A ' and a vertical wall at ' B ' and makes an angle of 60° with the horizontal. Find the maximum distance ' x ' up the ladder at which a man of weight 000 N can stand without causing slipping of the ladder. The coeffigent of friction between floor \& ladder and wall \& ladder is 0.3. Neg'ict the weight of ladder.
Q. 7 (a) Detarmine maximum bending stress and maximum shear stress in a cbintilever beam of length 2 m . The beam carries a udl of $8 \mathrm{kN} / \mathrm{m}$ over the entire length of 2 m and a concentrated vertical downward load of 25 kN at the free end of cantilever. The cross-section of the beam is a rectangle of size 350 mm deep and 250 mm wide.
(b) The state of stress in two-dimensionally stressed body at a point is as shown in fig.7. Determine the principal stresses and maximum shear stress.

SKETCHES

Fig. 1 (Q:3(a))

Fig.3(Q:4 (0)

Fig.6(Q:6(a))

