	Se	at No.: Enrolment No	
	GUJARAT TECHNOLOGICAL UNIVERSITY		
	B. E SEMESTER –I • EXAMINATION – WINTER 2012		
	Su	bject code: 110010 Date: 17-01-2013	
Subject Name: Mechanics of Solids		biect Name: Mechanics of Solids	
	Ti	me: $10.30 \text{ am} = 01.30 \text{ pm}$ Total Marks: 70	
	1 Attempt all questions		
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
Q.1	(a)	Fill in the blanks	07
		(i) The process of finding components of a single force is called	
		(ii) Force can be defined in terms of magnitude, direction and	
		(iii) I wo equal unlike parallel forces form a	
		(iv)All joints in truss are joints (v) Radius of synation is given by the equation $k=$	
		(v) Value of shear stresses on principal plane is	
		(vii)At neutral axis, the value of bending stress in the beam is	
	(b)	Define :(i) Particle (ii) Equilibrant (iii) Perfect truss (iv) Bulk modulus	07
		(v) Poisson's ratio (vi) Point of contraflexure (vii) Deformable body	
Q.2	(a)	(i) Determine magnitude and direction of resultant force of force system	04
		shown in Fig. 1	0.2
		Fig. 2	03
	(b)	For system shown in Fig. 3 if a cylinder A weight 20 kN find weight of B and force in each cord	07
	()	so that the system remain in equilibrium.	01
Q.3	(a)	Calculate the force 'P' required for equilibrium of bar shown in Fig. 4 Determine total change in	07
	(1)	length of the bar. $E_s = 200 \text{ GPa}$, $E_b = 100 \text{ GPa}$, $E_a = 75 \text{ GPa}$	~-
	(b)	Copper rod of 35 mm diameter is enclosed in steel tube of 50 mm external diameter and 44 mm	07
		mm anart. The temperature of the assembly is then raised by 150°C. Determine stresses in the tube	
		and the rod. Find also change in length.	
		Take $\alpha_c = 17 \times 10^{-6} C$, $\alpha_s = 10.8 \times 10^{-6} C$, $E_c = 100 \text{ GPa}$, $E_s = 200 \text{ GPa}$	
		YOM XO	
Q.4	(a)	Determine the centroid of bar bent into a shape as shown in Fig.5	07
	(b)	Write assumption made in analysis of truss.	07
		Find support reaction and member forces for the truss shown in Fig 6.	
05	(a)	For beam shown in Fig7 Determine support reaction at A and B	07
Q.3	(a) (h)	Draw shear force and bending moment diagram for beam shown in Fig 8	07
	(0)	Draw shour force and centaring moment angrann for cean shown in Fig.o	07
Q.6	(a)	A ladder 7 m long rests against a vertical wall with which it makes an angle of 45° and resting on	07
C		a floor. If a man whose weight is one half of that the ladder, climbs it. At what distance along the	
		ladder will he be when ladder is about to slip? μ = 1/3 at wall and 1/2 at floor	
	(b)	Define principal planes. The shear and normal stresses on a cross section of a beam as shown in	07
		Fig.9. Find the principal stresses and direction of principal planes	
07	(a)	A cast iron test beam 30 mm square in cross section 500 mm long is simply supported at ends. It	07
Q.1	(a)	fails at central point load at 4.32 kN What load at free end will cause the failure of cantilever	07
		beam of 1m span made of same material 30 mmx60 mm in cross section?	
	(b)	(i) Draw shear stress distribution diagrams for following shapes	04
		Rectangle, Triangle, I, H	
		(ii) What do you understand by polar moment of inertia?	03
		Give the equations for moment of inertia about the base of following	
		1. Rectangulai area 2. Inangular area	

Download all NOTES and PAPERS at StudentSuvidha.com

Download all NOTES and PAPERS at StudentSuvidha.com