Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE- Ist /IInd SEMESTER-EXAMINATION – MAY/JUNE - 2012

Subject code: 110009

Subject Name: Mathematics - II

Time: 10:30 am – 01:30 pm

Date: 26/05/2012

Total Marks: 70

- Instructions:
 - 1. Attempt any five questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
 - 4. Each question carry equal marks

Q.1	(a)	Solve by Gauss Jordan Method	3
		x + y + z = 3, x + 2y - z = 4, x + 3y + 2z = 4	
	(b)	Express the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ as a product of Elementary	7
		Matrix.	
	(C)	Find the inverse of the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$	4
Q.2	(a)	Prove that $\ \bar{u} + \bar{v}\ ^2 + \ \bar{u} - \bar{v}\ ^2 = 2\ \bar{u}\ ^2 + 2\ \bar{v}\ ^2$	3
	(b)1	Let $\overline{u} = (2,4,6)$ and $\overline{a} = (1,-1,-1)$. Find the vector component of \overline{u} along \overline{a} and orthogonal to \overline{a} .	4
	2	Give a 3x 3 singular matrix such that all the entries in the matrix are non zero.	2
	(c)1	Consider $\overline{u} = (6, 2, 3), \overline{v} = (2, 2, -1)$ and $\overline{w} = (1, 0, 1)$ with same initial point. Determine whether they are in the same plane?	2
	2	State Cauchy Schwarz inequality in R^n and verify for the vectors $u = (1, 2, -3)$ and $\overline{v} = (1, 0, 2)$.	3
Q.3	(a)1	Write the standard matrix for linear transformation T(x, y, z, w) = (3x + z + w, x - y - w)	2
	2	Use matrix multiplication to find the reflection of $(2,-1,4)$ about <i>xy</i> - plane.	2
	3	Use matrix multiplication to find the image of the vector $(1,-1,3)$ if it is rotated -30° about the x – axis.	2
	(b)	Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equation $w_1 = x_1 + 2x_2, w_2 = 2x_1 + 3x_2$	5
	(c)	Is one – to – one and find $T^{-1}(w_1, w_2)$. Is $T(x, y) = (x + 3y, y - 2)$ linear operator?	3
Q.4	(c) (a)		4
Q.4	(a)	Consider real vector space P_2 with standard operations. Is $S_1 = \{a_0 + a_1x + a_2x^2 / a_0 = 0\}$ and $S_2 = \{a_0 + a_1x + a_2x^2 / a_0 \neq 0\}$ are subspaces? Give reasons.	4

1

Download all NOTES and PAPERS at StudentSuvidha.com

	(b)	Find an equation of the plane spanned by the vectors $\overline{u} = (1,1,2), \ \overline{v} = (3,2,0)$	4
	(c)1	Is the set $S = \{3 + x + x^2, 2 - x + 5x^2, 4 - 3x^2\}$ linearly	3
		independent in P_2 with standard operations?	
	2	Write any three bases of P_2 .	3
Q.5	(a)	Determine the basis of plane $x + 4y - 3z = 0$.	4
	(b)	Let $S = \{\overline{v_1}, \overline{v_2}, \overline{v_3}, \overline{v_4}, \overline{v_5}\}$. Find a subset of <i>S</i> that forms a basis	4
		for the space spanned by <i>S</i> . Also express other vectors as	
		linear combination of basis vectors. Here, $\overline{x} = (1 - 1 - 2) \overline{x} = (0 - 1 - 1) \overline{x} = (1 - 2 - 2) \overline{x} = (0 - 2 - 6) \overline{x} = (-1 - 2 - 2)$	
	(c)1	$\overline{v}_1 = (1, -1, 2), \ \overline{v}_2 = (0, 1, 1), \ \overline{v}_3 = (1, 2, 8), \ \overline{v}_4 = (0, 3, 6), \ \overline{v}_5 = (-1, 3, 3)$	3
	(0)1	$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$	J
		Find a basis for the null space of $A = \begin{bmatrix} -2 & 1 & 0 \\ -1 & 1 & 3 \end{bmatrix}$.	
	2		3
		Find the rank and nullity of the matrix $A = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$	
Q. 6	(a)	Define an inner product on real vector space V .	4
		Let $\overline{u} = (u_1, u_2)$, $\overline{v} = (v_1, v_2)$ are any vectors in R^2 .	
		Show that $\langle \overline{u}, \overline{v} \rangle = 9u_1v_1 + 4u_2v_2$ is inner product on R^2 .	
	(b)	Find a basis for the orthogonal complement of	4
		$W = \{v_1, v_2, v_3, v_1\}, \text{ where } v_1 = (1, -1, 1, 0, 2), v_2 = (0, 3, 1, 0, 0),$	
		$\overline{v}_3 = (-1, 0, 0, 0, -1), v_4 = (0, -1, 1, 1, 1).$	
	(c)1	Apply Gram – Schmidt process to transform the basis vectors $\overline{x} = (0, 0, 1)$ in team orthogonal basis	4
	2	$u_1 = (0,1,1), u_2 = (0,1,1), u_3 = (0,0,1)$ in to an orthogonal basis. Write any three orthogonal matrices of the type 2×2.	2
Q.7	(a)		5
	()		
		Find eigen basis of the matric $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$	
	C		
	(b)	Find a matrix P that diagonalizes $\begin{bmatrix} 1 & 0 \end{bmatrix}$	4
		Find a matrix <i>P</i> that diagonalizes $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$.	
	(c)1	Is the function	3
		$T: P_2 \to P_2$, $T(a_0 + a_1x + a_2x^2) = a_0 + a_1(x+2) + (a_2+2)x^2$	
		linear transformation?	
	2	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = (x + y, x - y)$. Determine T^{-1} if possible.	2

2

Download all NOTES and PAPERS at StudentSuvidha.com