GUJARAT TECHNOLOGICAL UNIVERSITY

B.E Sem-I/II Examination June-July 2011

Subject code: 110009 Date: 8/7/2011

Total Marks: 70

Subject Name: Maths-II
Time: 10:30 am to 1:30pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) (i) Use Gauss-Jordan Method to find A⁻¹, if

05

$$\mathbf{A} = \begin{bmatrix} 7 & 6 & 2 \\ -1 & 2 & 4 \\ 3 & 6 & 8 \end{bmatrix}.$$

(ii) Show that the inner product

02

$$\langle u, v \rangle = 13u_1v_1 - 5u_1v_2 - 5u_2v_1 + 17u_2v_2$$

is generated by the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & -4 \end{bmatrix}$.

(b) (i) Test for consistency and solve

05

$$5x + 3y + 7z = 4$$

 $3x + 26y + 2z = 9$

$$7x + 2y + 10z = 5$$

(ii) Find the matrix representation of the quadratic form

02

$$x_1^2 + 7x_2^2 - 3x_3^2 + 4x_1x_2 - 2x_1x_3 + 6x_2x_3$$
.

Q.2 (a) Define work of a matrix. Determine the rank of the matrix A, if A 07

$$= \begin{bmatrix} 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19 \end{bmatrix}.$$

(b) Define adjoint of a matrix. Find the adjoint and inverse of A by **07** determent method:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}.$$

OR

(b) (i) Show that the set of vectors {(2, 1, 1), (1, 2, 2), (1, 1, 1)} is linearly dependent in R³.

(ii) Prove that the set of vectors {(1, 2, 2), (2, 1, 2), (2, 2, 1)} is linearly independent in R³.

03

04

- Q.3 (a) (i) State Cauchy-Schwarz inequality in \mathbb{R}^n . Verify Cauchy-Schwarz inequality for the vectors $u_1 = (0, -2, 2, 1)$, $u_2 = (-1, -1, 1, 1)$.
 - (ii) Define linear combination of vectors $v_1, v_2, v_3, \dots, v_n$. Express a vector v = (7, 4, -3) as a linear combination of $v_1 = (1, -2, -5), v_2 = (2, 5, 6)$.
 - **(b)** (i) If $S = \{v_1, v_2, v_3, v_4\}$ be a subset of a vector space V. Define span S. **03** Determine whether $v_1 = (1, 1, 2)$, $v_2 = (1, 0, 1)$ and $v_3 = (2, 1, 3)$ span the vector space R^3 .
 - (ii) Define subspace of a vector space. Check whether
 1. W = {(x, y) ∈ R²/x ≥ 0, y ≥ 0} is a subspace R².
 2. W = {(x, y, z) ∈ R³/ax + by + cz = 0, a, b, c ∈ R} is a subspace R³.

OR

- **Q.3** (a) Define basis of a vector space. If $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$, $v_3 = (3, 3, 4)$, show that $S = \{v_1, v_2, v_3\}$ is a basis for R^3 . Find the coordinates of v = (5, -1, 9) with respect to S.
 - (b) Define row space, column space and null space of a matrix. Find the row or space and column space of the matrix

$$A = \begin{bmatrix} 2 & -3 & 6 \\ 1 & -1 & 5 \\ -1 & 2 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

- Q.4 (a) Define linear transformation in Euclidean vector space. Check the 07 linearity of the following transformation.
 - (i) T: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1 + 1, x_2 + 2, x_3 + 4)$
 - (ii) T: $M_{nn} \rightarrow R$ defined by T(A) = det A.
 - (b) Find the associated matrix of the linear transformation T: $R^3 \rightarrow R^3$, $T(u_1, u_2, u_3) = (u_1 + u_2, u_2 + u_3, u_3 + u_1)$ with basis $B = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ and $B' = \{(1, 0, 1), (0, 1, 0), (1, 0, -1)\}$ for the domain and co-domain of T respectively.

OR

- Q.4 (a) If T: P₂ \rightarrow P₃ is the linear transformation defined by T(p(x)) = xp(x+1), 07 then find the matrix [T]_{B',B} with respect to the basis B = {1, x, x^2 } and B'={1, x, x^2 , x^3 }.
- **Q.4 (b)** State rank-nullity theorem. Find the rank and nullity of transformation T: $R^3 \rightarrow R^2$, T(x, y, z) = (x + y + z, x + y).

03

04

- (a) Show that the set $V = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is an orthonormal set **07 Q.5** in R³ with Euclidean inner product.
 - **(b)** Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\mathbf{OR}$$

- (a) Find a matrix that diagonalizes A and determine $P^{-1}AP$, where A 07 **Q.5**
 - (b) Let R³ have the Euclidean inner product. Use the Gram-Schmidt process 07 downloaded from Collins of the Colli to transform the basis $\{u_1, u_2, u_3\}$ into an orthonormal basis where $u_1 =$

07