\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E Sem-I/II Examination June-July 2011

Subject code: 110009
Date: 8/7/2011
Total Marks: 70

Subject Name: Maths-II
Time: 10:30 am to 1:30pm

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i) Use Gauss-Jordan Method to find A^{-1}, if

$$
A=\left[\begin{array}{ccc}
7 & 6 & 2 \\
-1 & 2 & 4 \\
3 & 6 & 8
\end{array}\right]
$$

(ii) Show that the inner product

$$
\left\langle u, v>=13 u_{1} v_{1}-5 u_{1} v_{2}-5 u_{2} v_{1}+17 u_{2} v_{2}\right.
$$

is generated by the matrix $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ 2 & -4\end{array}\right]$.
(b) (i) Test for consistency and solve

$$
\begin{gathered}
5 x+3 y+7 z=4 \\
3 x+26 y+2 z=9 \\
7 x+2 y+10 z=5
\end{gathered}
$$

(ii) Find the matri\& representation of the quadratic form

$$
x_{1}^{2}+7 x_{2}^{2}-3 x_{3}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}+6 x_{2} x_{3} .
$$

Q. 2 (a) Define $h k$ of a matrix. Determine the rank of the matrix A, if A
$=\left[\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19\end{array}\right]$.
(b) Define adjoint of a matrix. Find the adjoint and inverse of A by determent method:

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right]
$$

OR
(b) (i) Show that the set of vectors $\{(2,1,1),(1,2,2)$,
(ii) Prove that the set of vectors $\{(1,2,2),(2,1,2)$, $(2,2,1)\}$ is linearly independent in R^{3}.
Q. 3 (a) (i) State Cauchy-Schwarz inequality in R^{n}. Verify Cauchy-

Schwarz inequality for the vectors $u_{1}=(0,-2,2,1)$, $u_{2}=(-1,-1,1,1)$.
(ii) Define linear combination of vectors $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Express a vector $v=(7,4,-3)$ as a linear combination of $v_{1}=(1,-2,-5), v_{2}=(2,5,6)$.
(b) (i) If $\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a subset of a vector space V . Define span S . Determine whether $v_{1}=(1,1,2), \quad v_{2}=(1,0,1)$ and $v_{3}=(2,1,3)$ span the vector space R^{3}.
(ii) Define subspace of a vector space. Check whether

1. $W=\left\{(x, y) \in \mathrm{R}^{2} / x \geq 0, y \geq 0\right\}$ is a subspace R^{2}.
2. $W=\left\{(x, y, \mathrm{z}) \in \mathrm{R}^{3} / a x+b y+c \mathrm{z}=0, a, b, c \in \mathrm{R}\right\}$ is a subspace R^{3}.

OR

Q. 3 (a) Define basis of a vector space. If $v_{1}=(1,2,1), v_{2}=(2,9,0), v_{3}=(3,3,4)$, show that $\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for R^{3}. Find the coordinates of $v=(5$, $-1,9)$ with respect to S.
(b) Define row space, column space and null space of a matrix. Find the row space and column space of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -3 & 6 \\
1 & -1 & 5 \\
-1 & 2 & 0 \\
4 & 1 & 1
\end{array}\right]
$$

Q. 4 (a) Define lineag transformation in Euclidean vector space. Check the linearity of forie following transformation.
(i) $\mathrm{T}: \mathrm{R}^{p} \rightarrow \mathrm{R}^{3}$ defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+1, x_{2}+2\right.$, (1) $\mathrm{O}+4$
(ii) $\mathrm{T}: \mathrm{M}_{n n} \rightarrow \mathrm{R}$ defined by $\mathrm{T}(\mathrm{A})=\operatorname{det} \mathrm{A}$.
(b) Find the associated matrix of the linear transformation $\quad T: R^{3} \rightarrow R^{3}$, 07 $\mathrm{T}\left(u_{1}, u_{2}, u_{3}\right)=\left(u_{1}+u_{2}, u_{2}+u_{3}, u_{3}+u_{1}\right)$ with basis $\mathrm{B}=\{(1,0,0),(1,1,0)$, $(1,1,1)\}$ and $\mathrm{B}^{\prime}=\{(1,0,1)$, $(0,1,0),(1,0,-1)\}$ for the domain and co-domain of T respectively.

OR
Q. 4 (a) If T: $\mathrm{P}_{2} \rightarrow \mathrm{P}_{3}$ is the linear transformation defined by $\mathrm{T}(p(x))=x p(x+1)$, then find the matrix $[\mathrm{T}]_{\mathrm{B}^{\prime}, \mathrm{B}}$ with respect to the basis $\mathrm{B}=\left\{1, x, x^{2}\right\}$ and $\mathrm{B}^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$.
Q. 4 (b) State rank-nullity theorem. Find the rank and nullity of transformation $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}, \mathrm{~T}(x, y, z)=(x+y+z, x+y)$.
Q. 5 (a) Show that the set $\mathrm{V}=\{(1,0,0),(0,1,0),(0,0,1)\}$ is an orthonormal set in R^{3} with Euclidean inner product.
(b) Find the Eigen values and Eigen vectors of the matrix

$$
\begin{gathered}
\mathrm{A}=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right] \\
\\
\mathbf{O R}
\end{gathered}
$$

Q. 5 (a) Find a matrix that diagonalizes A and determine $\mathrm{P}^{-1} \mathrm{AP}$, where A 07 $=\left[\begin{array}{ccc}2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(b) Let R^{3} have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ into an orthonormal basis where $u_{1}=$ $(1,1,1), u_{2}=(-1,1,0)$ and $u_{3}=(1,2,1)$.

