\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM- I / II Winter Examination-Dec.-2011

Subject code: 110009
Date: 19/12/2011

Subject Name: Mathematics-II

Time: $\mathbf{1 0 . 3 0} \mathbf{~ a m ~ - ~} \mathbf{- 1 . 3 0} \mathbf{~ p m}$
Total marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1
(a) Find two vectors in R^{2} with Euclidean norm 1 whose

Euclidean inner product with $(3,-1)$ is zero.
(b) If $v_{1}=(1,2,3), v_{2}=(-1,-2,-3), v_{3}=(2,4,6)$ are three vectors
in R^{3} that have their initial points at the origin. Do they lie in the same line?
(c) If $(7 A)^{-1}=\left[\begin{array}{cc}-3 & 7 \\ 1 & -2\end{array}\right]$ then find matrix A.
(d) Is the matrix $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ in row-echelon form or reduced row-echelon form?
(e) Find the fink of thê matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$.
(f) Find the standard matrix for the reflection operator about $x y$ - plane in R^{3}.
(g) Find $u \cdot v$ given that $\|u+v\|=1$ and $\|u-v\|=5$ in an inner product space.

Q. 2 (a)

(I) Show that the set of all pairs of real numbers of the form $(1, x)$
with the operations defined as $\left(1, x_{1}\right)+\left(1, x_{2}\right)=\left(1, x_{1}+x_{2}\right)$, $k(1, x)=(1, k x)$ is a vector space.
(II) Solve the system of equations $x+y+z=6, x+2 y+3 z=14$, $2 x+4 y+7 z=30$ by using Gaussian elimination method.
(b)
(I) Show that the set $S=\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$ in $C^{2}(-\infty, \infty)$ is linearly independent.
(II) Determine whether $W=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in R, a+b+c+d=0\right\}$ is a subspace of M_{22} or not.
Q. 3 (a)
(I) Determine whether the following polynomials span P_{2} or not.
$p_{1}=1-x^{2}, p_{2}=1+2 x+x^{2}, p_{3}=-3 x+2 x^{2}$.
(II) Determine whether the set
$S=\left\{2-x+4 x^{2}, 3+6 x+2 x^{2}, 2+10 x-4 x^{2}\right\}$
is linearly independent or dependent in P_{2}.
(b)
(I) Find a standard basis vector that can be added to the set
$S=\{(1,-1,0),(3,1,-2)\}$ to produce a basis of R^{3}.
(II) Determine whether b is in the column space of A and if so,
express b as a linear combination of the column vectors of A
where $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3\end{array}\right]$ and $b=\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$.
(c) Show that $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis of M_{22}.
Q. 4 (a)
(I) Determine the dimension and a basis for the solution space of the
system $x_{1}-3 x_{2}+x_{3}=0,2 x_{1}-6 x_{2}+2 x_{3}=0,3 x_{1}-9 x_{2}+3 x_{3}=0$.
(II) Reduce $S=\{(1,-3,2),(2,4,1),(3,1,3),(1,1,1)\}$ to obtain a basis
for the subspade $W=$ span S of R^{3}.
(b)
(I) Find a bads for the row space and column space of the matrix

(II) Find a basis for the null space of $A=\left[\begin{array}{ccc}2 & -1 & -2 \\ -4 & 2 & 4 \\ -8 & 4 & 8\end{array}\right]$.
(c) Find rank and nullity of the matrix $\left[\begin{array}{ccc}1 & -1 & -1 \\ 4 & -3 & -1 \\ 3 & -1 & 3\end{array}\right]$.
Q. 5 (a)
(I) Compute $d(f, g)$ for vectors $f=2+8 x^{2}, g=x-5 x^{2}$ in P_{2} with inner product defined as $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$.
(II) Show that the set of vectors $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ where
$u_{1}=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right), u_{2}=\left(-\frac{1}{2}, \frac{1}{2}, 0\right), u_{3}=\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)$ is orthogonal with respect to the Euclidean inner product on R^{3}. Also convert S into orthonormal set by normalizing the vectors.
(b)
(I) Find a basis for the orthogonal complement of the subspace W of R^{3} defined as $W=\left\{(x, y, z) \in R^{3} \mid-2 x+5 y-z=0\right\}$.
(II) Find a matrix P that diagonalizes the matrix $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$ and hence find A^{13}.
(c) If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ then find the eigen values of A^{2} and A^{-1}.
Q. 6 (a)
(I) Let R^{3} have the Euclidean inner product. Use the Gram-Schmidt
process to transform the basis $S=\{(1,1,1),(0,1,1),(0,0,1)\}$ into an orthonormal basis.
(II) Let V be the inner product space of all real valued continuous
functions on $[0, \pi / 2]$ with $\langle f, g\rangle=\int_{0}^{\pi / 2} f(x) g(x) d x$. Find the angle between $\cos x$ and $\sin x$.
(b)
(I) Determine algebraic and geometric multiplicity of each eigen
value of the matrix $\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$
(II) Define: (i) Hemitian matrix (ii) Unitary matrix (iii) Normal matrix.
(c) If $A \rightarrow\left[\begin{array}{cc}102 & -3 \\ 0 & 2\end{array}\right]$ then find the eigen values of A^{T} and $5 A$
Q. 7 (a)
(I) Is $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x-y+z, 2 y-z, 2 x+3 y)$
linear? is T one to one?
(II) Let $T_{1}: R^{2} \rightarrow R^{3}, T_{2}: R^{3} \rightarrow R^{3}, T_{3}: R^{3} \rightarrow R^{2}$ be the linear transformations given by $T_{1}(x, y)=(-2 y, 3 x, x-2 y)$, $T_{2}(x, y, z)=(y, z, x), T_{3}(x, y, z)=(x+z, y-z)$. Find the domain and codomain of $T_{3} \circ T_{2} \circ T_{1}$ and find $\left(T_{3} \circ T_{2} \circ T_{1}\right)(x, y)$. Also find $\left(T_{3} \circ T_{2} \circ T_{1}\right)(1,1)$.
(b) (I) Express the following quadratic forms in matrix notation.
(i) $2 x^{2}+5 y^{2}-6 z^{2}-2 x y-y z+8 z x$
(ii) $2 x^{2}+3 y^{2}+6 x y$
(II) Find the orthogonal projection of $u=(1,2,3,4)$ along $v=(1,-3,4,-2)$ in R^{4} with respect to the Euclidean inner product

