GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-II Examination June 2010

Subject code: 110009

Subject Name: Mathematics-II

Date: 23 /06 /2010

Time: 02.30 pm - 05.30 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Attempt any two:

06

i. Solve the following system for x, y and z:

$$-\frac{1}{x} + \frac{3}{y} + \frac{4}{z} = 30, \ \frac{3}{x} + \frac{2}{y} - \frac{1}{z} = 9, \ \frac{2}{x} - \frac{1}{y} + \frac{2}{z} = 10.$$

- ii. Find A^{-1} using row operations if $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$.
- iii. Find the standard matrices for the reflection operator about the line y = x on R^2 and the reflection operator about the yz plane on R^3 .
- (b) Show that there is no line containing the points (1,1), (3,5), (-1,6) and (7,2).
- (c) i. Find all vectors in R^3 of Euclidean norm 1 that are orthogonal to the vectors $u_1 = (1,1,1)$ and $u_2 = (1,1,0)$.
 - Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 6 \\ -6 & 3 & -8 \end{bmatrix}$ in terms of **02**

determinants

ii) Is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ in row-echelon or reduced row-echelon form?

Q.2

- (a) i. What conditions must b_1, b_2 and b_3 satisfy in order for $x_1 + 2x_2 + 3x_3 = b_1, 2x_1 + 5x_2 + 3x_3 = b_2, x_1 + 8x_3 = b_3$ to be consistent?
 - ii. Is $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 3y, y, z + 2x).

 linear? Is it one-to-one, onto or both? Justify.
- (b) i. Show that the set $S = \{e^x, xe^x, x^2e^x\}$ in $C^2(-\infty, \infty)$ is linearly independent.
 - ii. Check whether $V = R^2$ is a vector space with respect to the operations $(u_1, u_2) + (v_1, v_2) = (u_1 + v_1 2, u_2 + v_2 3)$ and $\alpha(u_1, u_2) = (\alpha u_1 + 2\alpha 2, \alpha u_2 3\alpha + 3), \alpha \in R$.

01

(b) i. State only one axiom that fails to hold for each of the following sets
$$W$$
 to be subspaces of the respective real vector space V with the standard operations:
$$[A] W = \{(x,y) \mid x^2 = y^2\}, \qquad V = R^2$$

$$[B] W = \{(x, y) | xy \ge 0\}, \qquad V = R^{2}$$

$$[C] W = \{(x, y, z) | x^{2} + y^{2} + z^{2} = 1\}, \qquad V = R^{3}$$

$$[D] W = \{A_{n \times n} | Ax = 0 \Rightarrow x = 0\}, \qquad V = M_{n \times n}$$

$$[E] W = \{f | f(x) \le 0 \ \forall x\}, \qquad V = F(-\infty, \infty)$$

$$[E] W = \{ f \mid f(x) \le 0, \forall x \}, \qquad V = F(-\infty, \infty)$$

ii. Check whether $S = \{\sin(x+1), \sin x, \cos x\}$ in $C(0, \infty)$ is 02 linearly independent.

Q.3

- 03 (a) Determine whether the following polynomials span P_2 : $p_1 = 1 - x + 2x^2$, $p_2 = 5 - x + 4x^2$, $p_3 = -2 - 2x + 2x^2$.
 - ii. Show that $S = \{1 t t^3, -2 + 3t + t^2 + 2t^3, 1 + t^2 + 5t^3\}$ is 03 linearly independent in P_3 .
- Find a standard basis vector that can be added to the set (b) 03 $S = \{(-1,2,3), (1,-2,-2)\}$ to produce a basis of R^3 .
 - ii. Determine whether b is in the column space of A, and if so, 03 express b as a linear combination of the column vectors of A if $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}.$ If A is an $m \times n$ matrix, what is the largest possible value for

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}.$$

- (c) 01
 - Food the number of parameters in the general solution of 01 Ax = 0 if A is a 5×7 matrix of rank 3.

Q.3

- Find basis and dimension of $W = \left\{ (a_1, a_2, a_3, a_4) \in R^4 \mid a_1 + a_2 = 0, a_2 + a_3 = 0, a_3 + a_4 = 0 \right\}.$ 03
 - Find a basis for the subspace of P_2 spanned by the vectors 03 $1 + x, x^2, -2 + 2x^2, -3x$
- i. Reduce $S = \{(1,0,0), (0,1,-1), (0,4,-3), (0,2,0)\}$ to obtain a (b) 03 basis of R^3 .
 - Find a basis for the row space of A and column space of A if $A = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 0 \end{bmatrix}$. Also verify the dimension theorem for 03 matrices.
- (c) Show that $S = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix} \right\}$ is a basis 02 for M_{22} .

05

(a) i. Compute
$$d(f,g)$$
 for $f = \cos 2\pi x$ and $g = \sin 2\pi x$ in $V = C[0,1]$ with inner product $\langle f,g \rangle = \int_{0}^{1} f(x)g(x)dx$.

ii. Find a basis for the orthogonal complement of the subspace of
$$R^3$$
 spanned by the vectors $v_1 = (1, -1, 3)$, $v_2 = (5, -4, -4)$ and $v_3 = (7, -6, 2)$.

(b) i. Let
$$W = span\left\{\left(\frac{4}{5}, 0, \frac{-3}{5}\right), (0, 1, 0)\right\}$$
. Express $w = (1, 2, 3)$ in

the form of $w = w_1 + w_2$, where $w_1 \in W$ and $w_2 \in W^{\perp}$.

ii. Define algebraic and geometric multiplicity. Show that
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$
 is not diagonalizable.

(c) Show that
$$P_3$$
 and M_{22} are isomorphic.

. 03

OF

(a) i. Let R^3 have the Euclidean inner product. Transform the basis $S = \{(1,0,0), (3,7,-2), (0,4,1)\}$ into an orthonormal basis using the Gram-Schmidt process.

using the Gram-Schmidt process.

ii. For
$$U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$$
 and $V = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$ in M_{22} , define $\langle U, V \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$. For the matrices A and B , verify Cauchy-Schwarz inequality and find the cosine of the argre between them, if $A = \begin{bmatrix} 2 & 6 \\ 1 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$.

(b) Find the least squares solution of the linear system Ax = b and find the orthogonal projection of b onto the column space of

A where
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}$.

ii. Find the transition matrix from basis
$$B = \{(1,0),(0,1)\}$$
 of R^2 to basis $B' = \{(1,1),(2,1)\}$ of R^2 .

(c) For the matrix
$$A = \begin{bmatrix} \frac{1+i}{2} & \frac{1+i}{2} \\ \frac{1-i}{2} & \frac{-1+i}{2} \end{bmatrix}$$
, show that the row vectors form

an orthonormal set in C^2 . Also, find A^{-1} .

(a) i. For the basis
$$S = \{v_1, v_2, v_3\}$$
 of R^3 , where $v_1 = (1,1,1)$, $v_2 = (1,1,0)$ and $v_3 = (1,0,0)$, let $T : R^3 \to R^3$ be a linear transformation such that $T(v_1) = (2,-1,4)$, $T(v_2) = (3,0,1)$, $T(v_3) = (-1,5,1)$. Find a formula for $T(x_1, x_2, x_3)$ and use it to find $T(2,4,-1)$.

ii. Let
$$T_1: M_{22} \to R$$
 and $T_2: M_{22} \to M_{22}$ be the linear transformations given by $T_1(A) = tr(A)$ and $T_2(A) = A^T$.

Find $(T_1 \circ T_2)(A)$ where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

(b) Find a matrix
$$P$$
 that diagonalizes $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, and hence find

 A^{10} . Also, find the eigenvalues of A^2 .

(c) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by 04 $T(x_1, x_2, x_3, x_4) = (w_1, w_2, w_3)$ where $w_1 = 4x_1 + x_2 - 2x_3 - 3x_4$, $w_2 = 2x_1 + x_2 + x_3 - 4x_4$, $w_3 = 6x_1 - 9x_3 + 9x_4$. Find bases for the range and kernel of T.

Q.5

(a) Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be the linear transformation defined by $T(x_1, x_2) = (x_2, -5x_1 + 13x_2, -7x_1 + 16x_2)$. Find the matrix for the transformation T with respect to the bases

$$= \left\{ (1,0,-1)^T, (-1,2,2)^T, (0,1,2)^T \right\} \text{ for } R^3.$$

(b)
$$R^{2} = \{(3,1)^{T}, (5,2)^{T}\} \text{ for } R^{2} \text{ and}$$

$$= \{(1,0,-1)^{T}, (-1,2,2)^{T}, (0,1,2)^{T}\} \text{ for } R^{3}.$$

$$R^{2} \to R^{2} \text{ be defined by } T(x,y) = (x+y,x-y). \text{ Is } T$$
one-one? If so, find formula for $T^{-1}(x,y)$.

ii) Find eigenvalues of
$$A = \begin{bmatrix} -420 & \frac{1}{2} & 576 \\ 0 & 0 & 0.6 \\ 0 & 0 & \sqrt{3} \end{bmatrix}$$
. Is A

invertible?

Translate and rotate the coordinate axes, if necessary, to put the (c) 05 conic $9x^{2} - 4xy + 6y^{2} - 10x - 20y = 5$ in standard position. Find the equation of the conic in the final coordinate system.