GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 110008 Date Subject Normer Mothematics		code: 110008 Date: 29-12-2014	te: 29-12-2014	
Time: 10:30 am - 01:30 pm Total Mar)		
Ins	1. 2. 3.	ONS: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	(i) If $3-x^3 \le g(x) \le 3 \sec x$, for all x, find $\lim_{x \to 0} g(x)$.	02	
		(ii) Find the value of c so that function becomes continuous $f(x) = cx+1 ; \ x \le 3$ $= cx^2-1 ; \ x > 3$	02	
		(iii) Verify the Lagrange's mean value theorem for the function $f(x) = 2x^2 + 3x + 4$ in [a b]	03	
	(b)	(i) Find the Maclaurin series of function tanx upto terms containing x^5 .	03	
		(ii) Evaluate using L' Hospital rule $\lim_{x \to 1} \left[\frac{1}{\log x} + \frac{x}{x-1} \right]$	02	
		(iii) Evaluate using L' Hospital rule $\lim_{x\to 0} (a^x + x)^{1/x}$	02	
Q.2	(a)	(i) Find the local maximum and local minimum value of the function $f(x) = 3x^3 - 9x^2 + 15x + 11$	04	
		(ii) Evaluate $\int_{0}^{\infty} \frac{dx}{a^2 + x^2} = a > 0$	03	
	(b)	(i) Trace the curve $x^3 + y^3 = 3axy$ (ii) Discuss the convergence of the integral $\int_0^\infty \frac{1}{x^2} dx$	04 03	
Q.3	(a)	(i) Does the sequence whose n^{th} term is $a_n = [(n+1)/(n-1)]^n$ converge? If so, find $\lim_{n \to \infty} a_n$	04	
		(ii) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$	03	
	(b)	(i) Test the convergence of the series $\sum_{n=1}^{\infty} \left[\left(\left(\frac{3}{4} \right)^{n-1} - \frac{4}{n(n+1)(n+2)} \right) \right]$ (ii) Show that the sequence [3/ (n+3)] is a decreasing sequence.	04 03	
Q.4	(a)	(i) If $u = 2(ax + by)^2 - (x^2 + y^2)$ and $a^2 + b^2 = 1$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$	03	
		(ii) Find the equation of the tangent plane and normal line to the surface $2xz^2 - 3xy - 4x = 7$ at (1,-1,2)	04	

Download all NOTES and PAPERS at StudentSuvidha.com

(b) (i) Discuss the continuity of the function

 $f(x,y) = (x^2 - y^2)/(x^2 + y^2) \quad ; (x,y) \neq (0,0) \\ = 0 \qquad \qquad ; (x,y) = (0,0)$

(ii) If
$$u = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$$
 then find the value of
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$
04

Q.5 (a) (i) If
$$u = x^2 + y^2$$
, $x = acost$, $y = bsint then find $\frac{du}{dt}$ 03
(ii) Find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$ where $x = rcos\theta$, $y = rsin\theta$ and $z = z$.$

(b) (i) Change the order of integration in the integral
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$$
 and evaluate 03 it.

(ii) Find the volume of the region bounded by the surface
$$x = 0$$
, $y = 0$,
 $x + y + z = 1$ and $z = 0$. 04

Q.6 (a) (i) Find the directional derivatives of
$$f(x,y,z) = x^2z + 2xy^2 + yz^2$$
 at the point O3
P (1,2,-1) in the direction of the vector $a = 2i+3j-4k$.

(ii) Using Green's Theorem evaluate
$$\int (x^2ydx + x^2dy)$$
; where c is the boundary c 04

(b) (i) Show that
$$F(x, y, z) = y^2 z^3 i + 2xyz^3 j + 3xy^2 z^2 k$$
 is a conservative vector **03**
Field.

(ii) If
$$F = 3xyi - y^2j$$
 then evaluate $\int F.dr$, where c is the arc of the parabola 04

$$y = 2x^2$$
 from (0, 0) to (1,2).

Q.7 (a) (i) Test the convergence of the series
$$\sum_{n=1}^{\infty}$$

03

03

(ii) If $u = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} + \frac{\partial u}{\partial z}$ 04

(b) (i) Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dxdy$$
.
(ii) Find the Taylor's series expansion of $f(x) = \sin x$ in the power of $(x - \pi/2)$.
(Hence obtain $\sin 91^{\theta}$.

Download all NOTES and PAPERS at StudentSuvidha.com