\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 B. E. - SEMESTER - I • EXAMINATION - WINTER • 2014

Subject code: 110008
Date: 29-12-2014
Subject Name: Mathematics - I
Time: 10:30 am - 01:30 pm
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i) If $3-x^{3} \leq g(x) \leq 3 \sec x$, for all x, find $\lim g(x)$.
(ii) Find the value of c so that function becomes continuous

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{cx}+1 & & ; \mathrm{x} \leq 3 \\
& =\mathrm{cx}^{2}-1 & & ; \mathrm{x}>3
\end{aligned}
$$

(iii) Verify the Lagrange's mean value theorem for the function
$f(x)=2 x^{2}+3 x+4$ in $[a, b]$.
(b) (i) Find the Maclaurin series of function tanx upto terms containing x^{5}.
(ii) Evaluate using L' Hospital rule $\lim _{x \rightarrow 1}\left[\frac{1}{\log x} \frac{x}{x-1}\right]$
(iii) Evaluate using L' Hospital rule $\lim \left(a^{x}+x\right)^{1 / x}$
Q. 2 (a) (i) Find the local max enum and local minimum value of the function
(b) (i) Ty ae the curve $x^{3}+y^{3}=3$ axy $\quad 04$
(ii) Discuss the convergence of the integral $\int_{0}^{\infty} \frac{1}{x^{2}} \mathrm{dx}$
Q. 3 (a) (i) Does the sequence whose $\mathrm{n}^{\text {th }}$ term is $\mathrm{a}_{\mathrm{n}}=[(\mathrm{n}+1) /(\mathrm{n}-1)]^{\mathrm{n}}$ converge? If so,
(ii) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
(b) (i) Test the convergence of the series $\sum_{\mathrm{n}=1}^{\infty}\left[\left(\left(\frac{3}{4}\right)^{\mathrm{n}-1}-\frac{4}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}\right)\right]$
(ii) Show that the sequence $[3 /(n+3)]$ is a decreasing sequence.
Q. 4 (a) (i) If $\mathrm{u}=2(a x+b y)^{2}-\left(x^{2}+y^{2}\right)$ and $a^{2}+b^{2}=1$ then prove that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

(ii) Find the equation of the tangent plane and normal line to the surface

$$
2 x^{2}-3 x y-4 x=7 \text { at }(1,-1,2)
$$

(b) (i) Discuss the continuity of the function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}, \mathrm{y}) & =\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) /\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) & ;(\mathrm{x}, \mathrm{y}) \neq(0,0) \\
& =0 & ;(\mathrm{x}, \mathrm{y})=(0,0)
\end{aligned}
$$

(ii) If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then find the value of

$$
x^{2} \frac{\partial^{z} u}{\partial x^{z}}+2 x y \frac{\partial^{x} u}{\partial x \partial y}+y^{2} \frac{\partial^{x} u}{\partial y^{z}}
$$

Q. 5 (a) (i) If $u=x^{2}+y^{2}, x=\operatorname{acost}, y=b \operatorname{sint}$ then find $\frac{d u}{d t}$
(ii) Find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$ where $x=r \cos \theta, y=r \sin \theta$ and $z=z$.
(b) (i) Change the order of integration in the integral $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$ and evaluate it.
(ii) Find the volume of the region bounded by the surface $x=0, y=0$, $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ and $\mathrm{z}=0$.
Q. 6 (a) (i) Find the directional derivatives of $f(x, y, z)=x^{2} z+2 x y^{2}+y z^{2}$ at the point
$P(1,2,-1)$ in the direction of the vector $a=2 i+3 j-4 k$.
(ii) Using Green's Theorem evaluate $\int\left(x^{2} y d x+x^{2} d y\right)$; where c is the boundary c
of the triangle whose vertices $(0,0),(1,0),(1,1)$.
(b) (i) Show that $F(x, y, z)=y^{2} z^{3} i+2 x y z^{3} j+3 x y^{2} z^{2} k$ is a conservative vector Field.
(ii) If $\mathrm{F}=3 \mathrm{xyi}-\mathrm{y}^{2} \mathrm{j}$ then evaluate $\int \mathrm{F} . \mathrm{dr}$, wherec is the arc of the parabola

$$
y=2 x^{2} \text { from }(0,0) \text { to }(1,2)
$$

Q. 7 (a) (i) Test the convergefice of the series
(ii) If u d $1(x-y, y-z, z-x)$ then find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$
(b) (i) Evaluate $\int_{0}^{\infty} \int_{0}^{-\left(x^{2}+y^{2}\right)} d x d y$.
(ii) Find the Taylor's series expansion of $f(x)=\sin x$ in the power of $(x-\pi / 2)$.

