GUJARAT TECHNOLOGICAL UNIVERSITY

BE- Ist /IInd SEMESTER-EXAMINATION - MAY/JUNE - 2012

Subject code: 110008 Date: 06/06/2012

Subject Name: Maths-I

Time: 10:30 am - 01:30 pm **Total Marks: 70**

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Each question carry equal marks

Q.1 (a) Evaluate: (i)
$$\lim_{x \to 0} \frac{1}{x} \int_{-\cos x}^{1-\cos x} \frac{1}{x} \int_{-$$

(c) Find the Taylor series generated by
$$f(x) = \frac{1}{x}$$
 at a=2. Where ,if anywhere , does the series converge to $\frac{1}{x}$?

(d) Find Maclaurin series for the function
$$x^4 - 2x^3 - 5x + 4$$
.

(e) Evaluate
$$\int_{0}^{1} \int_{0}^{1-y^2} dx dy dz$$
. 02
(a) Discuss the convergence of the following series: 06

(i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{2^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (iii) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{n+1}}{2n-1}$ (b) Sine Direct comparison test for improper integrals. Using it show that, $\int_{-\infty}^{\infty} e^{-x^2} dx$ is convergent.

(i)
$$\int_{0}^{\infty} \frac{dx}{x^2 + 1}$$
 (ii) $\int_{0}^{\infty} \frac{dv}{(1 + v^2)(1 + \tan^{-1} v)}$

Q.3 (a) (i) Show that
$$f(x, y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x, y) \neq 0 \\ 0, & (x, y) = 0 \end{cases}$$
 is continuous **05**

at every point except at the origin.

(ii) Express
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, $z = 2r$.

State Euler's theorem on homogeneous function of two variable and (b) 05 apply it to evaluate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ if $u = \tan^{-1} \left(\frac{x^2 + y^2}{x - y} \right)$.

(c) If
$$u = \log(x^3 + y^3 - x^2y - xy^2)$$
 prove that
$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 u = \frac{-4}{(x+y)^2}.$$

- **Q.4**
- (a) Find the extreme values of $\sin x + \sin y + \sin(x + y)$, $(0 \le x, y \le \frac{\pi}{2})$. **05**
- (b) Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $(x^2 + y^2) = 1$ using the method of Lagrange multipliers.
- (c) Evaluate $\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dxdy$ by applying the transformation $u = \frac{2x-y}{2}, v = \frac{y}{2}$ and integrating over an appropriate region to the
- Q.5 (a) Evaluate $\iint_R (y-2x^2)dA$, Where R is the region bounded by the square |x|+|y|=1.
 - (b) Sketch the region of integration. Change the order of integration and evaluate the integral $\int_{0}^{1} \int_{y}^{\sqrt{y}} dx dy$
 - (c) Find the area enclosed by the cardioid $r = a(1 + \cos \theta)$.
- Q. 6 (a) Find the volume of the region that lies under the paraboloid $z = x^2 + y^2$ and above the triangle enclosed by the lines $y = x^2 + y^2 = 0$, and x + y = 2 in the xy-plane.
 - (b) Find the area of the region R enclosed by the parabola $y = x^2$ and ne line y = x + 2.
 - (c) Determine whether the vector field $\vec{u} = y^2 \vec{i} + 2xy \vec{j} z^2 \vec{k}$ is solenoidal or irrotational at a point (1,2,1)?
- Q.7 (a) State Green's theorem and using it ,evaluate $\oint_c xydy y^2dx$, 05

Where C is the square cut from the first quadrant by the lines x = 1 and y = 1.

- (b) Verify stoke's theorem for $\vec{F} = xy^2 \vec{i} + y \vec{j} + z^2 x \vec{k}$ for the surface of a rectangular lamina bounded by x = 0, y = 0, x = 1, y = 2, z = 0