Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM- I / II Winter Examination-Dec.-2011

Subject code: 110008 Date:			te: 23/12/2011
Time: 10.30 am -1.30 pm Total			tal marks: 70
1. 2. 3.	Attemp Make si Figures	t any five questions. uitable assumptions wherever necessary. to the right indicate full marks.	
Q	.1 (a)	(i) Verify Rolle's theorem for $f(x) = \frac{\sin x}{x}$ in (0, π).	03
		(ii) Find the maximum and minimum values of $f(x) = 8x^5 - 15x^4 + 10x^2$.	04
	(b)	(i) Evaluate $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right).$	02
		(ii) Evaluate $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$.	02
		(iii) Expand e^x in the powers of $(x - 1)$ up to four terms.	03
Q	.2 (a)	Discuss the convergence of the following: (i) $\sum_{n=1}^{\infty} \left[\sqrt{n^2 + 1} - n \right]$	02
		(ii) $\frac{1}{2\sqrt{5}} + \frac{x^4}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots \text{ to } \infty$	02
		$\int \frac{1}{1+x^2} dx$	03
	(b)	(i) Find the area of the loop of the curve $ay^2 = x^2(a-x)$. (ii) Find the entire length of the Cardiod $r = a(1 + \cos \theta)$.	04 03
Q	.3 (a)	(i) If $f(x, y) = \frac{y - x}{y + x}$ and $f(0,0) = 0$, discuss the continuity	03
		of $f(x, y)$ at $(0, 0)$. (ii) State Euler's theorem on homogeneous functions. Verify Euler's theorem when $f(x, y) = \frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}$	04
	(b)	Show that $\frac{\partial^2 z}{\partial x \partial y} = -[x \log(ex)]^{-1}$ at the point $x = y = z$ if	07 for
		the surface $x^x y^y z^z = c$.	
Q	.4 (a)	If $u = f(r, s, t)$ and $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$, pro	07 ve
		that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.	

Download all NOTES and PAPERS at StudentSuvidha.com

1

- points (b) Determine the function 07 where the $f(x, y) = x^3 + y^3 - 3axy$ has a maxima or minima.
- (a) Change to polar Q.5 coordinates and then evaluate 07 $\int_{0}^{\infty} \int_{0}^{\infty} \frac{x}{x^2 + y^2} dx dy \, .$
 - (b) Change the order of integration and then evaluate 07 $\int_{0}^{\infty}\int_{0}^{x}xe^{\frac{-x^{2}}{y}}dydx.$
- (a) Show by double integration that area between the parabolas 07 **Q.6** $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{2}a^2$.
 - (b) Find the volume under the plane x + y + z = 6 and above the 07 triangle in the xy-plane bounded by 2x = 3y, y=0, x=3.
- (i) Find the unit vector normal to the surface $x^2y + 2xz = 4$ 03 **0.7** (a) at the point (2, -2, 4).
 - (ii) Find the directional derivative of $f(x, y, z) = x^2 + 2z^2$ 04 at the point (1, 2, 3) in the direction 4i - 2i + k. In what direction will it be maximum? Also find the maximum value.
 - (b) State Green theorem in the plane. Use it to evaluate the 07 $r(x^{2}+y)$ integral $\int \left[(2x^2 + y^2) dx + (x^2 + y^2) dy \right]$ where c boundary of

the surface xy-plane enclosed by the x-axis and the semi-