$\qquad$

## GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-I Examination January 2010

Subject code: 110008
Date: 11 / 01 /2010

Subject Name: Mathematics - I
Time: 11.00 am - 02.00 pm
Total Marks: 70

## Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q1. (a) (i) Find the value of $k$ so that the function given below is continuous at a given point $x=2$.

$$
f(x)= \begin{cases}\frac{2^{x+2}-16}{4^{x}-16}, & x \neq 2 \\ k, & x=2\end{cases}
$$

(ii) State Sandwich theorem and using it find $\lim _{x \rightarrow 0} g(x)$ if $3-x^{3} \leq g(x) \leq 3 \sec x$ for all x .
(b) (i) If $f(x)$ and $g(x)$ are continuous functions for $0 \leq x \leq 1$, could $f(x) / g(x)$ possibly be discontinuous at a point in the interval [0,1]? Give reasons for your answer.
(ii) If $f:(a, b) \rightarrow \mathfrak{R}$ is differentiable at $c \in(a, b)$, then show that
$\lim _{h \rightarrow 0^{+}} \frac{f\left(c+0^{\prime}\right)-f(c-h)}{2 h}$ exists and equals $f^{\prime}(c)$. Is the converse true?
(c) (i) Undon Mean Value Theorem, Prove $0<\frac{1}{x} \log \left(\frac{e^{x}-1}{x}\right)<1$, for $x>0$.
(ii) For what values of $a, m$ and $b$ does the function

satisfy the hypothesis of the Mean Value Theorem on the interval $[0,2]$.

Q2. (a) (i) Find the area of the region between the $x$-axis and the graph of $f(x)=x^{3}-x^{2}-2 x,-1 \leq x \leq 2$.
(ii) Using Fundamental Theorem of Calculus find $d y / d x$ if $y=\int_{1}^{x^{2}} \cos t d t$.
(iii) Evaluate the integral $\int_{0}^{\infty} \frac{d x}{x^{2}+1}$.
(b) (i) Find the absolute maximum and minimum values of the function on the given 03 interval $f(t)=|t-5|, 4 \leq t \leq 7$.
(ii) Find the Taylor's series expansion of $f(x)=x^{3}-2 x+4, \quad a=2$.
(iii) The geometric mean of two positive numbers $a$ and $b$ is the number $\sqrt{a b}$. Show that the value of $c$ in the conclusion of the Mean Value Theorem for $f(x)=1 / x$ on an interval of positive numbers $[a, b]$ is $c=\sqrt{a b}$.

## OR

(b) (i) Test the convergence or divergence of the following series (ANY TWO)
a. $\quad \sum_{n=0}^{\infty} \frac{2^{n}-1}{3^{n}}$
b. $\sum_{n=1}^{\infty} \frac{n}{e^{-n}}$
c. $\sum_{n=0}^{\infty} n!(x-4)^{n}$
(ii) Using Riemann Sum show that $\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$

Q3. (a) Suppose that $w=f(x, y), x=g(r, s)$ and $y=h(r, s)$ then write the chain rule for $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$. Also evaluate $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of $r$ and $s$ if $w=x+2 y+z^{2}, x=r / s, y=r^{2}+\ln s, z=2 r$.
(b) (i) Show that $\int_{-\infty}^{\infty} f(x) d x$ may not equal to $\lim _{b \rightarrow \infty} \int_{-}^{b} f(x) d x$.
(ii) If $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x-y}\right)$ show that $\left.x \frac{\partial u}{\partial x}+y\right) \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u$
(c)

Find the length of the curve $y=\int \sqrt{\cos 2 t} d t$ from $x=0$ to $x=\pi / 4$.

## OR

Q3. (a) Let $)^{-1} f(x, y, z)$ be a function of three independent variables, write the
formal definition of the partial derivative for $\partial f / \partial z$ at $\left(x_{0}, y_{0}, z_{0}\right)$. Using this definition find $\partial f / \partial z$ at $(1,2,3)$ for $f(x, y, z)=x^{2} y z^{2}$.
(b) (i) Show that
$f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 \quad, & (x, y)=(0,0)\end{cases}$
is continuous at every point except at the origin.
(ii) Find $d w / d t$ if $w=x y+z, x=\cos t, y=\sin t, z=t$.
(c) Find the volume of the solid generated by revolving the region bounded by
$y=\sqrt{x}$ and the lines $y=2$ and $x=0$ about the line $y=2$.
Q4. (a) (i) Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$
(ii) Find the volume of the region that lies under the paraboloid $z=x^{2}+y^{2}$ and above the triangle enclosed by the lines $y=x, x=0$ and $x+y=2$ in the $x y-$ plane.
(b)
(c)
) Find the equations for tangent plane and normal line at the point $(1,1,1)$ on the 03 surface $x^{2}+y^{2}+z^{2}=3$.
Find the area of the region that lies inside the cardioid $r=1+\cos \vartheta$ and outside the circle $r=1$.

## OR

Q4. (a)
Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{2 \pi}\left(r^{2} \cos ^{2} \vartheta+z^{2}\right) r d \vartheta d r d z$.
Integrate $f(x, y)=\frac{\ln \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}$ over the region $1 \leq x^{2}+y^{2} \leq e$ by changing to polar coordinates
(ii) Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $\vec{v}=2 \vec{i}-3 \vec{j}+6 \vec{k}$.
Find the volume of the prism whose base is the triangle in $x y$ - plane bounded by the $x$-axis and the line $y=x$ and $x=1$ and whose top lies in the plane $z=f(x, y)=3-x-y$.
Q5. (a)
Integrate $f(x, y, z)=x+\sqrt{y}-z^{2}$ over the path $C=C_{1} \cup C_{2}$ from $(0,0,0)$ to $(1,1,1)$ with
$C_{1}: r(t)=t \vec{i}+t^{2} \vec{j}, 0 \leq t \leq 1$
$C_{2}: r(t)=\vec{i}+\vec{j}+t \vec{k}, 0 \leq t \leq 1$
State Green's theorem and also evaluate the integral $\oint_{C}(6 y+x) d x+(y+2 x) d y$ where $C$ (fore circle $(x-2)^{2}+(y-3)^{2}=4$.
(b)
(c)

Q5. (a)
Trace $a$ curve $r^{2}=a^{2} \cos 2 \vartheta$.

## OR

 0) Use Green's theorem to evaluate the integral $\oint_{C}\left(y^{2} d x+x^{2} d y\right)$ where C. The triangle bounded by $x=0, x+y=1, y=0$.(b)

Find the flux of $F=y z \vec{j}+z^{2} \vec{k}$ outward through the surface S cut from the
cylinder $y^{2}+z^{2}=1, z \geq 0$, by the planes $x=0$ and $x=1$.
(c) Use Stoke's theorem to evaluate $\int_{C} F . d r$ if
$F=(x+y) \vec{i}+(2 x-z) \vec{j}+(y+z) \vec{k}$ and $C$ is the boundary of the triangle $(2,0,0),(0,3,0)$ and $(0,0,6)$.

