Seat No.: ____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-II [All Branch] examination June 2009

Subject code: 110006

Subject Name: Elements of Mechanical Engineering

Time: 10:30am-1:00pm

Total Marks: 70

Instructions:

Date: 15/06/2009

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Use of steam table is permissible.

Q:1	(a)	What is	Prime	mover?	How	are	they	classi	fied?
		XX 71 . 1	1			.1 .	~	~	D

- (b) With usual notations prove that Cp Cv = R.
- (c) A gas whose pressure, volume, and temperatures are 2.75 bar, 0.09m³ and 185°C [07] respectively has the state changed at constant pressure until its temperature becomes 15°C. Calculate
 - (i) Heat Transferred.
 - (ii) Work Done during the process.

Take R = 0.29 KJ/Kg K, and Cp = 1.005 KJ/Kg K.

Q: 2 (a) Define the following terms :

- (i) Indicated thermal efficiency.
- (ii) Compression ratio
- (iii) Scaverging.
- (b) Prove that dryness fraction + wetness fraction = 1.
- (c) The following readings were taken during the test on a single cylinder four stroke, [07] Oil engine

Cylinder diameter	= 270 mm
Stroke Length	= 380 mm
Mean effective pressure	= 6 bar
Engine Speed	= 250 rpm
Net load on brake	= 1000 N
Effective mean Diameter of brake	= 1.5 m
Fuel used	= 10 Kg/Hr
C.V. of Fuel	= 44400 KJ/Kg
Calculate:- (i) Brake Power.	

- (ii) Indicated Power.
- (iii) Mechanical Efficiency.
- (iv) Indicated Thermal Efficiency.

OR

(c) A six cylinder 4 Stroke IC Engine is to develop 89.5 KW indicated power at [07] 800 rpm. The stroke to bore ratio is 1.25 : 1. Assuming mechanical efficiency of 80% and brake mean effective pressure of 5 bar. Determine the diameter and stroke Of the Engine.

1

[03]

[04]

[03]

[04]

Download all NOTES and PAPERS at StudentSuvidha.com

Q: 3	(a) (b) (c)	Explain the essential elements of a Heat Engine. Show that the efficiency of Otto cycle is a function of Compression Ratio only. In air standard Otto Cycle the Maximum and Minimum temperatures are 1673 K and 288 K. The heat supplied per Kg of air is 800 KL Calculate	[03] [04] [07]
	•	(i) The Compression Ratio.	
		(ii) Efficiency.	
		(iii) Max & Min Pressures.	
		Take $Cv = 0.718 \text{ KJ/Kg K} \& \gamma = 1.4 \text{ for air.}$	
0.0		OR CONTRACTOR OF CONTRACTOR	F0.01
Q: 3	(a)	(i) Mountings	[03]
		(i) Actual Evaporation	
		(iii) Boiler Efficiency	
	(b)	Explain with neat sketch the constructional details and working of the Ramsbottom	[04]
		type spring loaded Safety Valve.	
	(c)	A Steam Generator evaporates 18000 Kg/Hr of steam at 12 bar Pressure and steam	[07]
		is 97% dry. Feed water temperature = 105 °C . Coal is fired at the rate of 2050 Kg/Hr.	
		C.V. of Coal is 27400 KJ/Kg. Calculate.	
		(1) Heat Supplied per Hour.	
		(ii) I nermal Efficiency.	
		(III) Actual Evaporation.	
O: 4	(a)	What is the function of Governor? Classify the Governing methods used in I.C.	[03]
C C		engines and describe quantity method of Governing.	
	(b)	Prove that the work done per Kg of air in Reciprocating Air Compressor	[04]
		neglecting clearance volume is given by	
		$W = RT_1 p / (n-1) [(Rp)^{(n-r)/n} - 1], Where Rp = Pressure Ratio.$	[0 5]
	(c)	Air is to be Compressed or a single stage reciprocating compressor from 1.013 bar	[07]
		and 15°C to / bar. Calculate the indicated power required for a free air derivery of 0.3 m^3 / min where the compression process is	
		(i) Isentronia (ii) Reversible Isothermal	
		(iii) Polytopic with $n = 1.25$. What will be the delivery temperature in each	
		case? Neglect clearance.	
		OR	
Q: 4	(a)	Why air conditioning is required in air craft?	[03]
	(b)	With neat sketch describe the working of simple vapour compression refrigeration	[04]
		Cycle. (Drawing p-h and T-Ø chart)	
	(c)	State the different types of centrifugal pumps. Describe diffuser type of	[07]
0.5	(a)	centrifugal pump. What is function of Coupling? Name only various types of couplings	F0/1
Q: 3	(a)	Explain Oldham coupling	[04]
	(b)	Write short note on Helical gear.	[04]
	(\mathbf{c})	What are bearings? How are they classified? Explain Thrust Bearing.	[06]
		OR	
Q: 5	(a)	Write short notes on :	[06]
		(i) CNG	
		(1) Composite materials.	FA 43
	(b)	State and explain Zeroth law of Thermodynamics.	[04]
	(C)	Emist physical properties of Engineering materials *********	[04]

2

Download all NOTES and PAPERS at StudentSuvidha.com