\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 B.E. Sem-I/II Examination June-July 2011

Subject code: 110005
Date: 28/06/11
Instructions:

Subject Name: Element of Electrical Engineering
Total Marks: $70 \quad$ Time: 10:30 am to 1:00pm

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain the factors affecting the resistance of a conducting material.
(b) An alternating voltage of $\mathrm{v}=100 \sin (376.8 \mathrm{t})$ is applied to a coil having

03 resistance 6Ω and inductance of 21.22 mH .
Determine (i) Current through the coil
(ii) Power dissipated in the coil
(c) The waveform for instantaneous power in ac circuit is resolved into two component, i.e. $\mathrm{p}(\mathrm{t})=\mathrm{p}_{1}(\mathrm{t})+\mathrm{p}_{2}(\mathrm{t})$. Plots of both components are shown in fig no1. Calculate magnitude of total real power and magnitude of total reactive power (write unit also).
Q. 2 (a) Explain charging and discharging of a capacitor, C, through a resistor, R, with neat sketch and derive the equation $V_{c}=V\left(1-e^{-t / R C}\right)$. Assume that the R-C series circuit is connected aeross a d.c supply of voltage V .
(b) A parallel plate capacitor has plates of area $2 \mathrm{~m}^{2}$ spaced by three slabs of different materals. The relative permittivity are 2,3 and 6 and thickness are 04 0.6 and 1.2 mm respectively. Calculate the equivalent capacitance electric stress in each material when the applied voltage is 1000 J

OR

(b) A rig has a mean diameter of 21 cm and a cross sectional area of 10 cm^{2}. The ring is made up of semi circular sections of cast iron and cast steel, with joint having reluctance equal to an air gap of 0.2 mm . Find the amp-turns required to produce a flux of $8 \times 10^{-4} \mathrm{wb}$. The relative permeability of cast steel and cast iron are 800 and 166 respectively. Neglect fringing and leakage effect
Q. 3 (a) State and explain self inductance (L). Derive expression of co-efficient 06 of mutual coupling between two coils having self inductances of L_{1} and L_{2}.
(b) Explain magnetic hysteresis 04
(c) Prove that the average power consumption in a pure inductive or capacitive circuit is zero.

OR

Q. 3 (a) A balanced three phase supply is given to a star connected load. Give proof of two wattmeter method for this system. State demerits of this method.
(b) Derive the equation of energy stored in a magnetic field. $\mathbf{0 4}$
(c) An alternating current having an equation $\mathrm{I}=141.4 \sin 314 \mathrm{t}$.

Find: (i)Frequency (ii)R.M.S. Value (iii)Average Value (iv) An instantaneous value of current when ' t ' is 2 ms .
Q. 4 (a) State and Explain plate and pipe earthling with neat diagram. 07
(b) General guideline for wiring of domestic installation with neat sketch 07for position of equipment.
OR
Q. 4 (a) Explain with diagram different types of illumination scheme. 07
(b) Explain with neat sketch construction and working of lead acid battery 07
Q. 5 (a) Explain with neat sketch general construction of cable. 05
(b) With necessary diagram derive the formula for star to delta and delta to 05star transformation.
(c) A balanced three phase power supply is connected to a balanced load. Derive the expression of instantaneous power of phase A , $\mathrm{pa}(\mathrm{t})$. Obtain expression of $\mathrm{p}(\mathrm{t})$, where $\mathrm{p}(\mathrm{t})$ is summation of instantaneous powers of all three phases. assume that $\mathrm{V}_{\mathrm{a}}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$ and $i_{a}(t)=I_{m} \sin (\omega t-\Phi)$.

OR

Q. 5 (a) Determine the current in 17Ω resistor in the network shown in Figure 07

(b) Giveomparison of series and parallel resonance in R-L-C A.C dipuit. Derive expression of quality factor, Q for series R-L-C circuit.

Figure 1
$* * * * * * * * * * * * *$

