\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-II [All Branch] examination June 2009

Subject code: 110005
 Subject Name: Elements of Electrical Engineering
 Time: 10:30am-1:00pm

Date: 12/06/2009
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Prove $\mathrm{R}_{\mathrm{t}_{2}}=\mathrm{R}_{\mathrm{t}_{1}}\left[1+\alpha_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\right]$, where notations have usual meanings.
(b) Determine the equivalent resistance between the terminals A and B of 05 network shown in figure 1.

(c) Explain KCL and KVL. 04
Q. 2 (a) Derive an expression for the equivalent capacitance of parallel plate $\mathbf{0 7}$ capacitors when they are connected in (i) series and (ii) Parallel.
(b) A $10 \mu F$ capacitor is connected in series with a $1 \mathrm{M} \Omega$ resistor. This combination is connected across a 100 V D.C. supply determine (i) time constant of the circuit (ii) the initial value of the charging current (iii) the initial rate of rise of voltage across the capacitor (iv) time taken for the capacitor voltage to reach 60 V .

OR
(b) A circular ring of mild steel has diameter of 20 cm and 2.0 mm side air gap. The cross section area is $3.2 \mathrm{~cm}^{2}$ Estimate the M.M.F required to establish 0.6 mWb flux. Assume relative permeability of mild steel $=900$.
Q. 3 (a) Compare Electric and Magnetic circuit. 05
(b) Distinguish statically induced and dynamically induced EMF. Derive05 expression for dynamically induced EMF.
(c) (i) Explain Magnetic Hysteresis. (ii) What do you understand by
coefficient of coupling between two magnetic coils.

OR

Q. 3 (a) Derive the expressions of equivalent inductance, when two $\mathbf{0 5}$ magnetically coupled coils are connected in series in two different ways.
(b) State and explain Faraday's laws of electromagnetic induction. 05
(c) Explain the term (i) reluctance (ii) permeability 04
Q. 4 (a) A series RLC circuit having resistance of 8Ω, inductance of 80 mH 07 and capacitance of $100 \mu F$ is connected across $150 \mathrm{~V}, 50 \mathrm{~Hz}$ supply (Fig. 2). Calculate,(a) the current, (b) the power factor, and (c) the voltages drops in the coil and capacitance.

(b) Define following terms in connection with A.C wave forms: (i)
Frequency (ii) phase \& phase defference (iii) Time Period (iv) form factor (v) R. M. S. Value (vi) Average Value

OR

Q. 4 (a) The circuit, hang two impedances of $\mathrm{Z}_{1}=8+\mathrm{j} 15 \Omega$ and $\mathrm{Z}_{2}=6$ j8 Ω in parlel, is comected to a single phase ac supply and the current 6 wn is 10 A . Find each branch current, both in magnitude and peise, and also the supply voltage.
(b) Define the term (1) reactance, (2) inductive reactance and (3)07 apacitive reactance and explain how it depends on frequency in an A. C. circuit.
Q. 5 (a) Derive an expression for the total power for a balanced 3 phase star $\mathbf{0 6}$ OR delta connected load in terms of line voltage line current and power factor.
(b) What is earthing? Explain requirement of earthing for any electrical 04 equipment.
(c) Draw the wiring diagram for the staircase wiring. 04

OR

Q. 5 (a) List various protective devices used in the electric circuits and $\mathbf{0 6}$ compare working of ELCB with MCB.
(b) How do you estimate the life of a battery when charging and 04 discharging characteristics are available?
(c) List lumens requirements for various categories of illumination.

