\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
B.E. all Sem-I Examination December 08/January 09

Elements of Electrical Engineering (110005)

DATE: 31-12-2008, Wednesday TIME: 12.00 to $\mathbf{2 . 3 0}$ p.m. MAX. MARKS: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Symbols have their usual meanings.
Q. 1
(a) Define temperature co-efficient of resistance. How resistances of different materials vary with temperature? Prove that $\alpha_{t}=\alpha_{0} /\left(1+\alpha_{0} t\right)$
(b) Explain the following terms: (i) Magnetomotive force (iii) Magnetic field $\mathbf{0 6}$ Intensity (iii) Reluctance
Q. 2
(a) Derive the expression for the voltage across the capacitor at any instant after $\mathbf{0 7}$ the application of dc voltage \mathbf{V} to a circuit having a capacitance \mathbf{C} in series with resistance \mathbf{R}.
(b) An iron ring having a cross sectional area of $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ and a mean diameter of 18 cm has a coil of 270 turns uniformly wound over it. A current of $1.27 \mathbf{A}$ flges through the coil which produces a flux of 1.13 $\mathbf{m W b}$ in the ring. Fifa the reluctance of the circuit, the absolute and relative permeabilities of ${ }^{4} 4 \mathrm{O}$

OR

(b) Two inducte coils-are connected in parallel. Derive the expression for $\mathbf{0 7}$ total ind (d)tance when (i) coils are in parallel aiding connection (ii) coils are in parariel opposing connection
Q. 3
(a) Explain the method of transforming a star network of resistances into delta network and vice versa.
(b) For the network shown in figure 1, determine the current supplied by the $\mathbf{0 5}$ battery using star-delta transformation.(All resistances are in ohms)

figure 1 OR

Q. 3
(a) Define (i) form factor (ii) peak factor. Obtain the rms value and average value of half wave rectified sinusoidal voltage wave.
(b) Three currents are represented by $\mathrm{i}_{1}=10 \sin \omega \mathrm{t} ; \quad \mathrm{i}_{2}=20 \sin (\omega \mathrm{t}-\pi / 6) ; \quad 04$ $\mathrm{i}_{3}=30 \sin (\omega \mathrm{t}+\pi / 4)$. Find magnitude and phase angle of resultant current.
(c) A certain waveform has a form factor of 1.2 and a peak factor of 1.5 . If the 02 maximum value is 100 , find rms value and average value.
Q. 4
(a) Discuss resonance in R-L-C series circuit. Explain how pf, X_{L} and R vary with frequency.
(b) Define power factor. What is the power factor of a pure inductor? Give the04 difference between active and reactive power.

Q. 4

(a) Prove that power in a 3-phase balanced circuit can be deduced from the readings of twd wattmeters. Draw the relevant connection and phasor diagrams. Dis uss the nature of power factor (i) when two readings are equal and ositive (iii) when two readings are equal but opposite in sign (iii) when dio wattmeter reads zero.
(b) Three similar coils each of resistance 28Ω and inductance 0.7 H are connected in (i) star (ii) delta. If the supply voltage is $230 \mathrm{~V}, 50 \mathrm{~Hz}$, calculate the linecurrent and total power absorbed.
Q. 5
(a) Explain the following methods of charging a battery (i) Constant current method (ii) Constant voltage method
(b) Classify and explain various types of lighting schemes. 06
(c) What is the function of fuse in an electrical circuit? State the desirable properties of fuse element.

OR

Q. 5
(a) Explain the wiring diagram of a tubelight with choke and glow starter.
(b) State the different methods of earthing and explain any one of them.

